{"title":"Entity recognition model of power safety regulations knowledge graph based on BERT-BiLSTM-CRF","authors":"Jianyou Yu, Jian Sun, Yunchang Dong, Dezhi Zhao, Xiaoyu Chen, Xianghong Chen","doi":"10.1109/ICPECA51329.2021.9362652","DOIUrl":null,"url":null,"abstract":"In the process of constructing the knowledge graph of power safety regulations, the traditional named entity recognition method is difficult to effectively identify the key information of the entity because the boundary of the power safety entity is fuzzy and difficult to define. Therefore, this paper proposes a power safety named entity recognition model based on BERT-BiLSTM-CRF. First, the word vector expression layer based on Transformer’s bidirectional encoder (BERT) obtains word-level features; then the bidirectional long-short-term memory neural network (BiLSTM) layer is used to extract contextual features to form a feature matrix, thereby improving the accuracy of text feature extraction; The optimal tag sequence is generated by the conditional random field layer (CRF), and the output result is corrected. Through the analysis of experimental examples, the validity and superiority of the proposed model are verified.","PeriodicalId":119798,"journal":{"name":"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPECA51329.2021.9362652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In the process of constructing the knowledge graph of power safety regulations, the traditional named entity recognition method is difficult to effectively identify the key information of the entity because the boundary of the power safety entity is fuzzy and difficult to define. Therefore, this paper proposes a power safety named entity recognition model based on BERT-BiLSTM-CRF. First, the word vector expression layer based on Transformer’s bidirectional encoder (BERT) obtains word-level features; then the bidirectional long-short-term memory neural network (BiLSTM) layer is used to extract contextual features to form a feature matrix, thereby improving the accuracy of text feature extraction; The optimal tag sequence is generated by the conditional random field layer (CRF), and the output result is corrected. Through the analysis of experimental examples, the validity and superiority of the proposed model are verified.
在构建电力安全法规知识图谱的过程中,由于电力安全实体边界模糊、难以定义,传统的命名实体识别方法难以有效识别实体的关键信息。为此,本文提出了一种基于BERT-BiLSTM-CRF的电力安全命名实体识别模型。首先,基于Transformer双向编码器(BERT)的词向量表达层获得词级特征;然后利用双向长短期记忆神经网络(BiLSTM)层提取上下文特征,形成特征矩阵,从而提高文本特征提取的准确性;由条件随机场层(conditional random field layer, CRF)生成最优标签序列,并对输出结果进行校正。通过实例分析,验证了所提模型的有效性和优越性。