An Efficient Approach to Enhance the Scalability of the HDFS: Extended Hadoop Archive (EHAR)

Vijay Sharma, N. Barwar
{"title":"An Efficient Approach to Enhance the Scalability of the HDFS: Extended Hadoop Archive (EHAR)","authors":"Vijay Sharma, N. Barwar","doi":"10.1109/ETI4.051663.2021.9619367","DOIUrl":null,"url":null,"abstract":"The Hadoop framework is most popular among data analytics applications. The file system of the Hadoop (HDFS) provides the layered storage facility for the frequent and infrequent data. In HDFS data can be archived using the HAR (Hadoop Archive) technique, but HAR archive are immutable means once the archive created it cannot be modified. One has to rewrite the whole archive if want to append the some new file to the existing archive. This paper introduces extended Hadoop archive (EHAR) that will resolve the scalability issue of the HDFS and also provide the mechanism to append the new files to the existing Hadoop archive. The experimental result shows that the execution time of the proposed approach is 53% to 39% lesser than the native HAR for the different fixed size files and 52% to 38% lesser than the native HAR for the different variable size files.","PeriodicalId":129682,"journal":{"name":"2021 Emerging Trends in Industry 4.0 (ETI 4.0)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Emerging Trends in Industry 4.0 (ETI 4.0)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETI4.051663.2021.9619367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Hadoop framework is most popular among data analytics applications. The file system of the Hadoop (HDFS) provides the layered storage facility for the frequent and infrequent data. In HDFS data can be archived using the HAR (Hadoop Archive) technique, but HAR archive are immutable means once the archive created it cannot be modified. One has to rewrite the whole archive if want to append the some new file to the existing archive. This paper introduces extended Hadoop archive (EHAR) that will resolve the scalability issue of the HDFS and also provide the mechanism to append the new files to the existing Hadoop archive. The experimental result shows that the execution time of the proposed approach is 53% to 39% lesser than the native HAR for the different fixed size files and 52% to 38% lesser than the native HAR for the different variable size files.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种增强HDFS可扩展性的有效方法:扩展Hadoop Archive (EHAR)
Hadoop框架在数据分析应用程序中最为流行。HDFS的文件系统为频繁数据和不频繁数据提供了分层存储设施。在HDFS中,数据可以使用HAR (Hadoop Archive)技术进行归档,但是HAR归档是不可变的,意味着一旦归档创建,它就不能被修改。如果想要将一些新文件附加到现有存档中,则必须重写整个存档。本文介绍了扩展Hadoop归档(EHAR),它将解决HDFS的可伸缩性问题,并提供将新文件附加到现有Hadoop归档的机制。实验结果表明,对于不同大小的固定文件,该方法的执行时间比本机HAR算法缩短53% ~ 39%,对于不同大小的可变文件,该方法的执行时间比本机HAR算法缩短52% ~ 38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Sybil Attack, Black Hole Attack and DoS Attack in VANET Using RSA Algorithm Real Time Servo Analysis of Non-Linear Conical Tank Level Control using Root Locus Technique Apply Blockchain Technology for Security of IoT Devices A Highly Efficient Intrusion Detection and Packet Tracking Based on Game Theory Approach Logistic Regression Model for Loan Prediction: A Machine Learning Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1