Qihang Shi, Nidish Vashistha, Hangwei Lu, Haoting Shen, Bahar Tehranipoor, D. Woodard, N. Asadizanjani
{"title":"Golden Gates: A New Hybrid Approach for Rapid Hardware Trojan Detection using Testing and Imaging","authors":"Qihang Shi, Nidish Vashistha, Hangwei Lu, Haoting Shen, Bahar Tehranipoor, D. Woodard, N. Asadizanjani","doi":"10.1109/HST.2019.8741031","DOIUrl":null,"url":null,"abstract":"Hardware Trojans are malicious modifications on integrated circuits (IC), which pose a grave threat to the security of modern military and commercial systems. Existing methods of detecting hardware Trojans are plagued by the inability of detecting all Trojans, reliance on golden chip that might not be available, high time cost, and low accuracy. In this paper, we present Golden Gates, a novel detection method designed to achieve a comparable level of accuracy to full reverse engineering, yet paying only a fraction of its cost in time. The proposed method inserts golden gate circuits (GGC) to achieve superlative accuracy in the classification of all existing gate footprints using rapid scanning electron microscopy (SEM) and backside ultra thinning. Possible attacks against GGC as well as malicious modifications on interconnect layers are discussed and addressed with secure built-in exhaustive test infrastructure. Evaluation with real SEM images demonstrate high classification accuracy and resistance to attacks of the proposed technique.","PeriodicalId":146928,"journal":{"name":"2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST.2019.8741031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Hardware Trojans are malicious modifications on integrated circuits (IC), which pose a grave threat to the security of modern military and commercial systems. Existing methods of detecting hardware Trojans are plagued by the inability of detecting all Trojans, reliance on golden chip that might not be available, high time cost, and low accuracy. In this paper, we present Golden Gates, a novel detection method designed to achieve a comparable level of accuracy to full reverse engineering, yet paying only a fraction of its cost in time. The proposed method inserts golden gate circuits (GGC) to achieve superlative accuracy in the classification of all existing gate footprints using rapid scanning electron microscopy (SEM) and backside ultra thinning. Possible attacks against GGC as well as malicious modifications on interconnect layers are discussed and addressed with secure built-in exhaustive test infrastructure. Evaluation with real SEM images demonstrate high classification accuracy and resistance to attacks of the proposed technique.