D. Van Tuan, Dang Thi Thuy Ngan, Nguyễn Thi Thuy, Hoang Lan, Nguyen Thi Nguyet, Vu Thi Phuong Thuy, Nguyen Dac Dien, V. V. Thu, P. H. Vuong, P. D. Tam
{"title":"Characterization of Enzymatic Glucose Biosensors Based on A Glassy Carbon Electrode Modified with MoS2 Nanorods","authors":"D. Van Tuan, Dang Thi Thuy Ngan, Nguyễn Thi Thuy, Hoang Lan, Nguyen Thi Nguyet, Vu Thi Phuong Thuy, Nguyen Dac Dien, V. V. Thu, P. H. Vuong, P. D. Tam","doi":"10.25073/2588-1124/vnumap.4737","DOIUrl":null,"url":null,"abstract":": In this work, molybdenum disulfide (MoS2) nanorods (NRs) were prepared by a simple hydrothermal method. A sensitive electrochemical glucose biosensor was developed based on the immobilization of glucose oxidase (GOx) on MoS2 NRs modified glassy carbon electrode (GCE). The SnO2 NRs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS). SnO2 NRs have large specific area and can load large amounts of GOx molecules. The cyclic voltammetry (CV) of GOx/MoS2 NR/GCE exhibited a linear relationship between the peak current density of CV with glucose concentration in the range of 3.0 mM to 7.0 mM with the limit of detection (LOD) of 3.0 mM and high sensitivity of mA.mM. The parameters affecting the oxidation current density such as pH, temperature, GOx concentration were also investigated. This study demonstrates the feasibility of realizing inexpensive, reliable, and highly effective performance glucose biosensors using MoS2 nanorods. \n \n ","PeriodicalId":303178,"journal":{"name":"VNU Journal of Science: Mathematics - Physics","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Mathematics - Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1124/vnumap.4737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
: In this work, molybdenum disulfide (MoS2) nanorods (NRs) were prepared by a simple hydrothermal method. A sensitive electrochemical glucose biosensor was developed based on the immobilization of glucose oxidase (GOx) on MoS2 NRs modified glassy carbon electrode (GCE). The SnO2 NRs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS). SnO2 NRs have large specific area and can load large amounts of GOx molecules. The cyclic voltammetry (CV) of GOx/MoS2 NR/GCE exhibited a linear relationship between the peak current density of CV with glucose concentration in the range of 3.0 mM to 7.0 mM with the limit of detection (LOD) of 3.0 mM and high sensitivity of mA.mM. The parameters affecting the oxidation current density such as pH, temperature, GOx concentration were also investigated. This study demonstrates the feasibility of realizing inexpensive, reliable, and highly effective performance glucose biosensors using MoS2 nanorods.