Word Sense Disambiguation Using Multiple Contextual Features

Liang-Chih Yu, Chung-Hsien Wu, Jui-Feng Yeh
{"title":"Word Sense Disambiguation Using Multiple Contextual Features","authors":"Liang-Chih Yu, Chung-Hsien Wu, Jui-Feng Yeh","doi":"10.30019/IJCLCLP.201009.0002","DOIUrl":null,"url":null,"abstract":"Word sense disambiguation (WSD) is a technique used to identify the correct sense of polysemous words, and it is useful for many applications, such as machine translation (MT), lexical substitution, information retrieval (IR), and biomedical applications. In this paper, we propose the use of multiple contextual features, including the predicate-argument structure and named entities, to train two commonly used classifiers, Naive Bayes (NB) and Maximum Entropy (ME), for word sense disambiguation. Experiments are conducted to evaluate the classifiers' performance on the OntoNotes corpus and are compared with classifiers trained using a set of baseline features, such as the bag-of-words, n-grams, and part-of-speech (POS) tags. Experimental results show that incorporating both predicate-argument structure and named entities yields higher classification accuracy for both classifiers than does the use of the baseline features, resulting in accuracy as high as 81.6% and 87.4%, respectively, for NB and ME.","PeriodicalId":436300,"journal":{"name":"Int. J. Comput. Linguistics Chin. Lang. Process.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Linguistics Chin. Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30019/IJCLCLP.201009.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Word sense disambiguation (WSD) is a technique used to identify the correct sense of polysemous words, and it is useful for many applications, such as machine translation (MT), lexical substitution, information retrieval (IR), and biomedical applications. In this paper, we propose the use of multiple contextual features, including the predicate-argument structure and named entities, to train two commonly used classifiers, Naive Bayes (NB) and Maximum Entropy (ME), for word sense disambiguation. Experiments are conducted to evaluate the classifiers' performance on the OntoNotes corpus and are compared with classifiers trained using a set of baseline features, such as the bag-of-words, n-grams, and part-of-speech (POS) tags. Experimental results show that incorporating both predicate-argument structure and named entities yields higher classification accuracy for both classifiers than does the use of the baseline features, resulting in accuracy as high as 81.6% and 87.4%, respectively, for NB and ME.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用多重上下文特征的词义消歧
词义消歧(WSD)是一种用于识别多义词正确意义的技术,它在许多应用中都很有用,例如机器翻译(MT)、词汇替换、信息检索(IR)和生物医学应用。在本文中,我们提出使用多个上下文特征,包括谓词-参数结构和命名实体,来训练两种常用的分类器,朴素贝叶斯(NB)和最大熵(ME),用于词义消歧。通过实验来评估分类器在OntoNotes语料库上的性能,并与使用一组基线特征(如词袋、n-gram和词性(POS)标签)训练的分类器进行比较。实验结果表明,与使用基线特征相比,结合谓词参数结构和命名实体对两个分类器产生更高的分类精度,对NB和ME的准确率分别高达81.6%和87.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Cold Start Personalized Language Model Using Social Network Information Detecting and Correcting Syntactic Errors in Machine Translation Using Feature-Based Lexicalized Tree Adjoining Grammars TQDL: Integrated Models for Cross-Language Document Retrieval Evaluation of TTS Systems in Intelligibility and Comprehension Tasks: a Case Study of HTS-2008 and Multisyn Synthesizers Effects of Combining Bilingual and Collocational Information on Translation of English and Chinese Verb-Noun Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1