Shipment Supplier Inference Using Topic Modeling

Chi-hung Chen
{"title":"Shipment Supplier Inference Using Topic Modeling","authors":"Chi-hung Chen","doi":"10.1145/3336499.3338013","DOIUrl":null,"url":null,"abstract":"This research applies Latent Dirichlet Allocation on United States Automated Manifest System Bill of Lading data. We define a \"bag of word\" where each Harmonized tariff code represents a document, each shipper name be a token and count of shipments to be element of matrix. The result shows that topic model is able to classify some shippers of the same industries.","PeriodicalId":148424,"journal":{"name":"Proceedings of the 5th Workshop on Data Science for Macro-modeling with Financial and Economic Datasets","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Workshop on Data Science for Macro-modeling with Financial and Economic Datasets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336499.3338013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research applies Latent Dirichlet Allocation on United States Automated Manifest System Bill of Lading data. We define a "bag of word" where each Harmonized tariff code represents a document, each shipper name be a token and count of shipments to be element of matrix. The result shows that topic model is able to classify some shippers of the same industries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于主题建模的货运供应商推理
本研究将潜在狄利克雷分配应用于美国自动舱单系统的提单数据。我们定义了一个“字袋”,其中每个协调税则号代表一个文件,每个托运人名称是一个标记,装运数量是矩阵的元素。结果表明,该主题模型能够对同一行业的部分托运人进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extensible and Scalable Entity Resolution for Financial Datasets Using RLTK Quantitative cryptocurrency trading: exploring the use of machine learning techniques Shipment Supplier Inference Using Topic Modeling Financial Entity Identification and Information Integration (FEIII) 2019 Challenge: The Report of the Organizing Committee An Online Semi-NMF Algorithm for Soft-Clustering of Financial Institutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1