A comparative study on cluster validity criteria in linear fuzzy clustering and pareto optimality analysis

Katsuhiro Honda, Tomonari Nomaguchi, A. Notsu, H. Ichihashi
{"title":"A comparative study on cluster validity criteria in linear fuzzy clustering and pareto optimality analysis","authors":"Katsuhiro Honda, Tomonari Nomaguchi, A. Notsu, H. Ichihashi","doi":"10.1109/FUZZY.2009.5277182","DOIUrl":null,"url":null,"abstract":"Cluster validation is an important issue in cluster analysis. In this paper, a comparative study on validity criteria is performed with linear fuzzy clustering that can be identified with a local PCA technique. Besides the standard fuzzification approach, the entropy regularization approach is responsible for fuzzification of data partition and the approach implies a close relation between FCM-type linear fuzzy clustering and probabilistic PCA models. This comparative study reveals mutual differences between two fuzzification approaches from the view point of cluster validation using several cluster validity criteria. Additional characteristics are shown in a pareto analysis, in which the effect of noise sensitivity is also discussed.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cluster validation is an important issue in cluster analysis. In this paper, a comparative study on validity criteria is performed with linear fuzzy clustering that can be identified with a local PCA technique. Besides the standard fuzzification approach, the entropy regularization approach is responsible for fuzzification of data partition and the approach implies a close relation between FCM-type linear fuzzy clustering and probabilistic PCA models. This comparative study reveals mutual differences between two fuzzification approaches from the view point of cluster validation using several cluster validity criteria. Additional characteristics are shown in a pareto analysis, in which the effect of noise sensitivity is also discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性模糊聚类与pareto最优分析中聚类有效性准则的比较研究
聚类验证是聚类分析中的一个重要问题。本文采用局部主成分分析技术,对线性模糊聚类的有效性标准进行了比较研究。除了标准的模糊化方法外,熵正则化方法还负责数据分区的模糊化,该方法暗示了fcm型线性模糊聚类与概率PCA模型之间的密切关系。这一比较研究揭示了两种模糊化方法之间的相互差异,从使用几个聚类效度标准的聚类验证的角度来看。在帕累托分析中显示了其他特性,其中也讨论了噪声灵敏度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and simulation of a hybrid controller for a multi-input multi-output magnetic suspension system Fuzzy CMAC structures Hybrid SVM-GPs learning for modeling of molecular autoregulatory feedback loop systems with outliers On-line adaptive T-S fuzzy neural control for active suspension systems Analyzing KANSEI from facial expressions with fuzzy quantification theory II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1