{"title":"Abnormality Detection in Musculoskeletal Radiographs using EfficientNets","authors":"Kasemsit Teeyapan","doi":"10.1109/ICSEC51790.2020.9375275","DOIUrl":null,"url":null,"abstract":"Abnormality detection in musculoskeletal radiographs, a regular task for radiologists, requires both experiences and efforts. To increase the number of radiographs interpreted each day, this paper presents cost-efficient deep learning models based on ensembles of EfficientNet architectures to help automate the detection process. We investigate the transfer learning performance of ImageNet pre-trained checkpoints on the musculoskeletal radiograph (MURA) dataset which is very different from the ImageNet dataset. The experimental results show that, the ImageNet pre-trained checkpoints have to be retrained on the entire MURA training set, before being trained on a specific study type. The performance of the EfficientNet-based models is shown to be superior to three baseline models. In particular, EfficientNet-B3 not only achieved the overall Cohen’s Kappa score of 0.717, compared to the scores 0.680, 0.688, and 0.712 for MobileNetV2, DenseNet-169, and Xception, respectively, but also being better in term of efficiency.","PeriodicalId":158728,"journal":{"name":"2020 24th International Computer Science and Engineering Conference (ICSEC)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 24th International Computer Science and Engineering Conference (ICSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEC51790.2020.9375275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Abnormality detection in musculoskeletal radiographs, a regular task for radiologists, requires both experiences and efforts. To increase the number of radiographs interpreted each day, this paper presents cost-efficient deep learning models based on ensembles of EfficientNet architectures to help automate the detection process. We investigate the transfer learning performance of ImageNet pre-trained checkpoints on the musculoskeletal radiograph (MURA) dataset which is very different from the ImageNet dataset. The experimental results show that, the ImageNet pre-trained checkpoints have to be retrained on the entire MURA training set, before being trained on a specific study type. The performance of the EfficientNet-based models is shown to be superior to three baseline models. In particular, EfficientNet-B3 not only achieved the overall Cohen’s Kappa score of 0.717, compared to the scores 0.680, 0.688, and 0.712 for MobileNetV2, DenseNet-169, and Xception, respectively, but also being better in term of efficiency.