Abnormality Detection in Musculoskeletal Radiographs using EfficientNets

Kasemsit Teeyapan
{"title":"Abnormality Detection in Musculoskeletal Radiographs using EfficientNets","authors":"Kasemsit Teeyapan","doi":"10.1109/ICSEC51790.2020.9375275","DOIUrl":null,"url":null,"abstract":"Abnormality detection in musculoskeletal radiographs, a regular task for radiologists, requires both experiences and efforts. To increase the number of radiographs interpreted each day, this paper presents cost-efficient deep learning models based on ensembles of EfficientNet architectures to help automate the detection process. We investigate the transfer learning performance of ImageNet pre-trained checkpoints on the musculoskeletal radiograph (MURA) dataset which is very different from the ImageNet dataset. The experimental results show that, the ImageNet pre-trained checkpoints have to be retrained on the entire MURA training set, before being trained on a specific study type. The performance of the EfficientNet-based models is shown to be superior to three baseline models. In particular, EfficientNet-B3 not only achieved the overall Cohen’s Kappa score of 0.717, compared to the scores 0.680, 0.688, and 0.712 for MobileNetV2, DenseNet-169, and Xception, respectively, but also being better in term of efficiency.","PeriodicalId":158728,"journal":{"name":"2020 24th International Computer Science and Engineering Conference (ICSEC)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 24th International Computer Science and Engineering Conference (ICSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEC51790.2020.9375275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abnormality detection in musculoskeletal radiographs, a regular task for radiologists, requires both experiences and efforts. To increase the number of radiographs interpreted each day, this paper presents cost-efficient deep learning models based on ensembles of EfficientNet architectures to help automate the detection process. We investigate the transfer learning performance of ImageNet pre-trained checkpoints on the musculoskeletal radiograph (MURA) dataset which is very different from the ImageNet dataset. The experimental results show that, the ImageNet pre-trained checkpoints have to be retrained on the entire MURA training set, before being trained on a specific study type. The performance of the EfficientNet-based models is shown to be superior to three baseline models. In particular, EfficientNet-B3 not only achieved the overall Cohen’s Kappa score of 0.717, compared to the scores 0.680, 0.688, and 0.712 for MobileNetV2, DenseNet-169, and Xception, respectively, but also being better in term of efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用EfficientNets检测肌肉骨骼x线片中的异常
肌肉骨骼x线片异常检测是放射科医师的一项常规任务,需要经验和努力。为了增加每天解读的x光片数量,本文提出了基于高效网络架构集成的经济高效的深度学习模型,以帮助自动化检测过程。我们研究了与ImageNet数据集非常不同的肌肉骨骼x线照片(MURA)数据集上ImageNet预训练检查点的迁移学习性能。实验结果表明,ImageNet预训练的检查点必须在整个MURA训练集上进行再训练,然后才能对特定的研究类型进行训练。基于efficientnet的模型的性能优于三个基线模型。特别是,与MobileNetV2、DenseNet-169和Xception的0.680、0.688和0.712相比,EfficientNet-B3不仅达到了0.717的Cohen’s Kappa总分,而且在效率方面也更胜一筹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiclass Classification of Astronomical Objects in the Galaxy M81 using Machine Learning Techniques A framework for cross-datasources agricultural research-to-impact analysis Abnormality Detection in Musculoskeletal Radiographs using EfficientNets Drowsiness Detection using Facial Emotions and Eye Aspect Ratios Approximating k-Connected m-Dominating Sets in Disk Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1