{"title":"Fast Non-minimal Solvers for Planar Motion Compatible Homographies","authors":"Marcus Valtonen Örnhag","doi":"10.5220/0007258600400051","DOIUrl":null,"url":null,"abstract":"This paper presents a novel polynomial constraint for homographies compatible with the general planar motion model. In this setting, compatible homographies have five degrees of freedom-instead of the general case of eight degrees of freedom-and, as a consequence, a minimal solver requires 2.5 point correspondences. The existing minimal solver, however, is computationally expensive, and we propose using non-minimal solvers, which significantly reduces the execution time of obtaining a compatible homography, with accuracy and robustness comparable to that of the minimal solver. The proposed solvers are compared with the minimal solver and the traditional 4-point solver on synthetic and real data, and demonstrate good performance, in terms of speed and accuracy. By decomposing the homographies obtained from the different methods, it is shown that the proposed solvers have future potential to be incorporated in a complete Simultaneous Localization and Mapping (SLAM) framework. (Less)","PeriodicalId":410036,"journal":{"name":"International Conference on Pattern Recognition Applications and Methods","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007258600400051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper presents a novel polynomial constraint for homographies compatible with the general planar motion model. In this setting, compatible homographies have five degrees of freedom-instead of the general case of eight degrees of freedom-and, as a consequence, a minimal solver requires 2.5 point correspondences. The existing minimal solver, however, is computationally expensive, and we propose using non-minimal solvers, which significantly reduces the execution time of obtaining a compatible homography, with accuracy and robustness comparable to that of the minimal solver. The proposed solvers are compared with the minimal solver and the traditional 4-point solver on synthetic and real data, and demonstrate good performance, in terms of speed and accuracy. By decomposing the homographies obtained from the different methods, it is shown that the proposed solvers have future potential to be incorporated in a complete Simultaneous Localization and Mapping (SLAM) framework. (Less)