A Comparator Design Targeted towards Neural Nets

D. Mountain
{"title":"A Comparator Design Targeted towards Neural Nets","authors":"D. Mountain","doi":"10.1109/ICRC.2019.8914715","DOIUrl":null,"url":null,"abstract":"Theshold gates are a specific type of neural network that have been shown to be valuable for cybersecurity applications. These networks can be implemented using analog processing in memristive crossbar arrays. For these types of designs, the performance of the comparator circuit is a critical factor in the overall capabilities of the neural network. In this work a relatively simple comparator design is demonstrated to be compact, low-power, and fast. The design takes advantage of features inherent in the neural net architecture and memristor technology. This paper includes the basic design and specific enhancements to improve its capabilities, along with power, area, and timing estimates.","PeriodicalId":297574,"journal":{"name":"2019 IEEE International Conference on Rebooting Computing (ICRC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2019.8914715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Theshold gates are a specific type of neural network that have been shown to be valuable for cybersecurity applications. These networks can be implemented using analog processing in memristive crossbar arrays. For these types of designs, the performance of the comparator circuit is a critical factor in the overall capabilities of the neural network. In this work a relatively simple comparator design is demonstrated to be compact, low-power, and fast. The design takes advantage of features inherent in the neural net architecture and memristor technology. This paper includes the basic design and specific enhancements to improve its capabilities, along with power, area, and timing estimates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向神经网络的比较器设计
阈值门是一种特殊类型的神经网络,已被证明对网络安全应用有价值。这些网络可以在忆阻交叉棒阵列中使用模拟处理来实现。对于这些类型的设计,比较器电路的性能是神经网络整体能力的关键因素。在这项工作中,一个相对简单的比较器设计被证明是紧凑、低功耗和快速的。该设计充分利用了神经网络结构和忆阻器技术的固有特点。本文包括基本设计和改进其功能的具体增强,以及功率、面积和时间估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Copyright notice] Entangled State Preparation for Non-Binary Quantum Computing Integrated Photonics Architectures for Residue Number System Computations Experimental Insights from the Rogues Gallery Message from the 2019 ICRC General Co-Chairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1