A Learning-based Approach for Martian Image Compression

Qing Ding, Mai Xu, Shengxi Li, Xin Deng, Qiu Shen, Xin Zou
{"title":"A Learning-based Approach for Martian Image Compression","authors":"Qing Ding, Mai Xu, Shengxi Li, Xin Deng, Qiu Shen, Xin Zou","doi":"10.1109/VCIP56404.2022.10008891","DOIUrl":null,"url":null,"abstract":"For the scientific exploration and research on Mars, it is an indispensable step to transmit high-quality Martian images from distant Mars to Earth. Image compression is the key technique given the extremely limited Mars-Earth bandwidth. Recently, deep learning has demonstrated remarkable performance in natural image compression, which provides a possibility for efficient Martian image compression. However, deep learning usually requires large training data. In this paper, we establish the first large-scale high-resolution Martian image compression (MIC) dataset. Through analyzing this dataset, we observe an important non-local self-similarity prior for Marian images. Benefiting from this prior, we propose a deep Martian image compression network with the non-local block to explore both local and non-local dependencies among Martian image patches. Experimental results verify the effectiveness of the proposed network in Martian image compression, which outperforms both the deep learning based compression methods and HEVC codec.","PeriodicalId":269379,"journal":{"name":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP56404.2022.10008891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For the scientific exploration and research on Mars, it is an indispensable step to transmit high-quality Martian images from distant Mars to Earth. Image compression is the key technique given the extremely limited Mars-Earth bandwidth. Recently, deep learning has demonstrated remarkable performance in natural image compression, which provides a possibility for efficient Martian image compression. However, deep learning usually requires large training data. In this paper, we establish the first large-scale high-resolution Martian image compression (MIC) dataset. Through analyzing this dataset, we observe an important non-local self-similarity prior for Marian images. Benefiting from this prior, we propose a deep Martian image compression network with the non-local block to explore both local and non-local dependencies among Martian image patches. Experimental results verify the effectiveness of the proposed network in Martian image compression, which outperforms both the deep learning based compression methods and HEVC codec.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于学习的火星图像压缩方法
从遥远的火星向地球传送高质量的火星图像,是对火星进行科学探索和研究必不可少的一步。由于火星-地球的带宽极为有限,图像压缩是关键技术。近年来,深度学习在自然图像压缩中表现出了显著的性能,为高效的火星图像压缩提供了可能。然而,深度学习通常需要大量的训练数据。本文建立了第一个大规模高分辨率火星图像压缩(MIC)数据集。通过对该数据集的分析,我们观察到Marian图像的一个重要的非局部自相似先验。在此基础上,我们提出了一种基于非局部块的火星图像深度压缩网络,用于探索火星图像补丁之间的局部和非局部依赖关系。实验结果验证了该网络在火星图像压缩中的有效性,其压缩效果优于基于深度学习的压缩方法和HEVC编解码器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CdCLR: Clip-Driven Contrastive Learning for Skeleton-Based Action Recognition Spectral Analysis of Aerial Light Field for Optimization Sampling and Rendering of Unmanned Aerial Vehicle Near-lossless Point Cloud Geometry Compression Based on Adaptive Residual Compensation Efficient Interpolation Filters for Chroma Motion Compensation in Video Coding Rate Controllable Learned Image Compression Based on RFL Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1