Determination of Surface Heat Flux in Quenching

M. K. Alam, H. Pasic, K. Anagurthi, R. Zhong
{"title":"Determination of Surface Heat Flux in Quenching","authors":"M. K. Alam, H. Pasic, K. Anagurthi, R. Zhong","doi":"10.1115/imece1999-1092","DOIUrl":null,"url":null,"abstract":"\n Quench probes have been used to collect temperature data in controlled quenching experiments; the data is then used to deduce the heat transfer coefficients in the quenching medium. The process of determination of the heat transfer coefficient at the surface is the inverse heat conduction problem, which is extremely sensitive to measurement errors. This paper reports on an experimental and theoretical study of quenching carried out to determine the surface heat flux history during a quenching process by an inverse algorithm based on an analytical solution. The algorithm is applied to experimental data from a quenching experiment. The surface heat flux is then calculated, and the theoretical curve obtained from the analytical solution is compared with experimental results. The inverse calculation appears to produce fast, stable, but approximate results. These results can be used as the initial guess to improve the efficiency of iterative numerical solutions which are sensitive to the initial guess.","PeriodicalId":306962,"journal":{"name":"Heat Transfer: Volume 3","volume":"299 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1999-1092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Quench probes have been used to collect temperature data in controlled quenching experiments; the data is then used to deduce the heat transfer coefficients in the quenching medium. The process of determination of the heat transfer coefficient at the surface is the inverse heat conduction problem, which is extremely sensitive to measurement errors. This paper reports on an experimental and theoretical study of quenching carried out to determine the surface heat flux history during a quenching process by an inverse algorithm based on an analytical solution. The algorithm is applied to experimental data from a quenching experiment. The surface heat flux is then calculated, and the theoretical curve obtained from the analytical solution is compared with experimental results. The inverse calculation appears to produce fast, stable, but approximate results. These results can be used as the initial guess to improve the efficiency of iterative numerical solutions which are sensitive to the initial guess.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
淬火时表面热流密度的测定
在控制淬火实验中,淬火探头用于采集温度数据;然后用这些数据推导出淬火介质中的传热系数。表面换热系数的确定过程是一个对测量误差极为敏感的反热传导问题。本文报道了采用基于解析解的逆算法确定淬火过程中表面热通量历史的实验和理论研究。将该算法应用于一个淬火实验的实验数据。计算了表面热流密度,并将解析解得到的理论曲线与实验结果进行了比较。反计算似乎产生快速、稳定但近似的结果。这些结果可以作为初始猜测,以提高对初始猜测敏感的迭代数值解的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heat Transfer Characteristics of Single Droplet Cooling Using a Microscale Heater Array Thermal Modeling for the Consolidation Process of Thermoplastic Composite Filament Winding Parametric Study of the Ablation Characteristics of Absorbing Dielectrics by Short Pulse Laser A Numerical Analysis of Gas Turbine Disks Incorporating Rotating Heat Pipes Neural Network Modeling of Molecular Beam Epitaxy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1