A method for generating document summary using field association knowledge and subjectively information

Abdunabi Ubul, E. Atlam, K. Morita, M. Fuketa, J. Aoe
{"title":"A method for generating document summary using field association knowledge and subjectively information","authors":"Abdunabi Ubul, E. Atlam, K. Morita, M. Fuketa, J. Aoe","doi":"10.1109/NLPKE.2010.5587853","DOIUrl":null,"url":null,"abstract":"In the recent years, with the expansion of the Internet there has been tremendous growth in the volume of electronic text documents available information on the Web, which making difficulty for users to locate efficiently needed information. To facilitate efficient searching for information, research to summarize the general outline of a text document is essential. Moreover, as the information from bulletin boards, blogs, and other sources is being used as consumer generated media data, text summarization become necessary. In this paper a new method for document summary using three attribute information called: the field, associated terms, and attribute grammars is presented, this method establish a formal and efficient generation technology. From the experiments results it turns out that the summary accuracy rate, readability, and meaning integrity are 87.5%, 85%, and 86%, respectively using information from 400 blogs.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the recent years, with the expansion of the Internet there has been tremendous growth in the volume of electronic text documents available information on the Web, which making difficulty for users to locate efficiently needed information. To facilitate efficient searching for information, research to summarize the general outline of a text document is essential. Moreover, as the information from bulletin boards, blogs, and other sources is being used as consumer generated media data, text summarization become necessary. In this paper a new method for document summary using three attribute information called: the field, associated terms, and attribute grammars is presented, this method establish a formal and efficient generation technology. From the experiments results it turns out that the summary accuracy rate, readability, and meaning integrity are 87.5%, 85%, and 86%, respectively using information from 400 blogs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种利用领域关联知识和主观信息生成文档摘要的方法
近年来,随着互联网的发展,网络上的电子文本文档数量急剧增加,这给用户有效定位所需信息带来了困难。为了方便有效地搜索信息,研究总结文本文档的总体轮廓是必不可少的。此外,由于来自公告板、博客和其他来源的信息被用作消费者生成的媒体数据,文本摘要就变得必要了。本文提出了一种利用字段、关联术语和属性语法三种属性信息进行文档摘要的新方法,该方法建立了一种形式化、高效的生成技术。实验结果表明,使用400个博客的信息,摘要的准确率、可读性和意义完整性分别为87.5%、85%和86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dashboard: An integration and testing platform based on backboard architecture for NLP applications Chinese semantic role labeling based on semantic knowledge Transitivity in semantic relation learning Wisdom media “CAIWA Channel” based on natural language interface agent A new cascade algorithm based on CRFs for recognizing Chinese verb-object collocation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1