Fault prognosis based on fault reconstruction: Application to a mechatronic system

M. Djeziri, H. Toubakh, M. Ouladsine
{"title":"Fault prognosis based on fault reconstruction: Application to a mechatronic system","authors":"M. Djeziri, H. Toubakh, M. Ouladsine","doi":"10.1109/ICOSC.2013.6750887","DOIUrl":null,"url":null,"abstract":"The fault prognosis method developed in this work has a horizontal structure, and aims the estimate the RUL by the reconstruction of the fault trend after detecting the degradation beginning. The diagnosis part is realized using a Principal Component Analysis (PCA), the fault reconstruction is done using the fault direction matrix, and the RUL is estimated using an Auto-Regressive Recurrent Radial Based Function (ARRRBF) neural network. The developed method is implemented on a mechatronic system dedicated to the prognosis, which offers the possibility of introducing gradual and controlled degradations.","PeriodicalId":199135,"journal":{"name":"3rd International Conference on Systems and Control","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd International Conference on Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2013.6750887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The fault prognosis method developed in this work has a horizontal structure, and aims the estimate the RUL by the reconstruction of the fault trend after detecting the degradation beginning. The diagnosis part is realized using a Principal Component Analysis (PCA), the fault reconstruction is done using the fault direction matrix, and the RUL is estimated using an Auto-Regressive Recurrent Radial Based Function (ARRRBF) neural network. The developed method is implemented on a mechatronic system dedicated to the prognosis, which offers the possibility of introducing gradual and controlled degradations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于故障重构的故障预测:在机电一体化系统中的应用
本文提出的故障预测方法具有水平结构,其目的是在检测到退化开始后,通过重建故障趋势来估计RUL。利用主成分分析(PCA)实现故障诊断,利用故障方向矩阵进行故障重构,利用自回归递归径向基函数(ARRRBF)神经网络估计故障强度。所开发的方法在一个专用于预测的机电系统上实现,它提供了引入渐进和可控退化的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust nonlinear control design for turbocharged biodiesel engine Observability-singularity manifolds in the context of chaos based cryptography Design of unbiased functional observers for interconnected discrete-time delay systems H∞ filter based-controller for a class of continuous time nonlinear singular systems From restricted isometry property to observability under sparse measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1