Cantilever arrayed blood pressure sensor for arterial applanation tonometry

Byeungleul Lee, Jinwoo Jeong, Chanseob Cho, Jinseok Kim, Bonghwan Kim, H. Kim, K. Chun
{"title":"Cantilever arrayed blood pressure sensor for arterial applanation tonometry","authors":"Byeungleul Lee, Jinwoo Jeong, Chanseob Cho, Jinseok Kim, Bonghwan Kim, H. Kim, K. Chun","doi":"10.1109/NEMS.2013.6559870","DOIUrl":null,"url":null,"abstract":"We developed a cantilever-arrayed blood pressure sensor array fabricated by (111) silicon bulk-micromachining for the noninvasive and continuous measurement of blood pressure. The blood pressure sensor measures the blood pressure based on the change in resistance of the piezoresistor on a 5-μm-thick-arrayed perforated membrane and 20-μm-thick metal pads. The length and width of the unit membrane are 210 and 310 μm, respectively. The width of the insensible zone between adjacent units is only 10 μm. The resistance change over contact force was measured to verify the performance. The good linearity of the result confirmed that the PDMS package transfers the forces appropriately. The measured sensitivity was about 4.5%/N. The maximum measurement range and resolution of the fabricated blood pressure sensor were greater than 900 mmHg and less than 1 mmHg, respectively.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2013.6559870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We developed a cantilever-arrayed blood pressure sensor array fabricated by (111) silicon bulk-micromachining for the noninvasive and continuous measurement of blood pressure. The blood pressure sensor measures the blood pressure based on the change in resistance of the piezoresistor on a 5-μm-thick-arrayed perforated membrane and 20-μm-thick metal pads. The length and width of the unit membrane are 210 and 310 μm, respectively. The width of the insensible zone between adjacent units is only 10 μm. The resistance change over contact force was measured to verify the performance. The good linearity of the result confirmed that the PDMS package transfers the forces appropriately. The measured sensitivity was about 4.5%/N. The maximum measurement range and resolution of the fabricated blood pressure sensor were greater than 900 mmHg and less than 1 mmHg, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于动脉压平测压的悬臂式阵列血压传感器
我们开发了一种由(111)硅体微加工制成的悬臂式血压传感器阵列,用于无创连续测量血压。血压传感器是在5 μm厚的穿孔膜和20 μm厚的金属垫片上,通过压敏电阻的电阻变化来测量血压。单元膜的长度为210 μm,宽度为310 μm。相邻单元之间的不敏感区宽度仅为10 μm。通过测量电阻随接触力的变化来验证其性能。结果良好的线性关系证实了PDMS包能很好地传递力。测得的灵敏度约为4.5%/N。所制血压传感器的最大测量范围大于900 mmHg,分辨率小于1 mmHg。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A nanometer-resolution displacement measurement system based on laser feedback interferometry Focusing reflector and lens with non-periodic phase-matched subwavelength high contrast grating Synthesis and size control of nano/submicron copper particles by feeding strategies Low-cost rapid prototyping of flexible plastic paper based microfluidic devices Cooling stimulation on cerebral cortex for epilepsy suppression with integration of micro-invasive electrodes and TE coolers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1