Evaluating performance of classifiers for supervisory protection using disturbance data from phasor measurement units

O. P. Dahal, H. Cao, S. Brahma, R. Kavasseri
{"title":"Evaluating performance of classifiers for supervisory protection using disturbance data from phasor measurement units","authors":"O. P. Dahal, H. Cao, S. Brahma, R. Kavasseri","doi":"10.1109/ISGTEUROPE.2014.7028892","DOIUrl":null,"url":null,"abstract":"This paper provides rationale for a supervisory protective system to improve security of power system using classification of PMU data. It evaluates the performance of four major classifiers to classify disturbance events residing within the disturbance data obtained from the Phasor Data Concentrator (PDC) owned by a local utility. These classifiers are Support Vector Machines (SVM), k-Nearest Neighbor Classifier, Naive Bayesian Classifier, and Recursive Partitioning and Regression Trees (RPART). Previous work by authors is used to obtain the targets (classes) for the classifiers. Performance of these classifiers is quantified in terms of accuracy and speed. Their suitability for real time classification to help create the supervisory protection system is discussed.","PeriodicalId":299515,"journal":{"name":"IEEE PES Innovative Smart Grid Technologies, Europe","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE PES Innovative Smart Grid Technologies, Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEUROPE.2014.7028892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper provides rationale for a supervisory protective system to improve security of power system using classification of PMU data. It evaluates the performance of four major classifiers to classify disturbance events residing within the disturbance data obtained from the Phasor Data Concentrator (PDC) owned by a local utility. These classifiers are Support Vector Machines (SVM), k-Nearest Neighbor Classifier, Naive Bayesian Classifier, and Recursive Partitioning and Regression Trees (RPART). Previous work by authors is used to obtain the targets (classes) for the classifiers. Performance of these classifiers is quantified in terms of accuracy and speed. Their suitability for real time classification to help create the supervisory protection system is discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用相量测量单元的干扰数据评估用于监督保护的分类器的性能
本文提出了一种基于PMU数据分类的监控保护系统,以提高电力系统的安全性。它评估了四个主要分类器的性能,以对来自当地公用事业公司拥有的相量数据集中器(PDC)获得的干扰数据中存在的干扰事件进行分类。这些分类器是支持向量机(SVM)、k近邻分类器、朴素贝叶斯分类器和递归划分和回归树(RPART)。作者以前的工作用于获得分类器的目标(类)。这些分类器的性能是根据准确性和速度进行量化的。讨论了它们是否适合实时分类,以帮助创建监督保护系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discrete elastic residential load response under variable pricing schemes Challenges in utilisation of demand side response for operating reserve provision Managing energy in time and space in smart grids using TRIANA Optimal scheduling of electrical vehicle charging under two types of steering signals A design-driven approach for developing new products for smart grid households
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1