Ensemble Neural Network Method for Wind Speed Forecasting

Binbin Yong, Fei Qiao, Chen Wang, Jun Shen, Yongqiang Wei, Qingguo Zhou
{"title":"Ensemble Neural Network Method for Wind Speed Forecasting","authors":"Binbin Yong, Fei Qiao, Chen Wang, Jun Shen, Yongqiang Wei, Qingguo Zhou","doi":"10.1109/SiPS47522.2019.9020410","DOIUrl":null,"url":null,"abstract":"Wind power generation has gradually developed into an important approach of energy supply. Meanwhile, due to the difficulty of electricity storage, wind power is greatly affected by the real-time wind speed in wind fields. Generally, wind speed has the characteristics of nonlinear, irregular, and non-stationary, which make accurate wind speed forecasting a difficult problem. Recent studies have shown that ensemble forecasting approaches combining different sub-models is an efficient way to solve the problem. Therefore, in this article, two single models are ensembled for wind speed forecasting. Meanwhile, four data pre-processing hybrid models are combined with the reliability weights. The proposed ensemble approaches are simulated on the real wind speed data in the Longdong area of Loess Plateau in China from 2007 to 2015, the experimental results indicate that the ensemble approaches outperform individual models and other hybrid models with different pre-processing methods.","PeriodicalId":256971,"journal":{"name":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS47522.2019.9020410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Wind power generation has gradually developed into an important approach of energy supply. Meanwhile, due to the difficulty of electricity storage, wind power is greatly affected by the real-time wind speed in wind fields. Generally, wind speed has the characteristics of nonlinear, irregular, and non-stationary, which make accurate wind speed forecasting a difficult problem. Recent studies have shown that ensemble forecasting approaches combining different sub-models is an efficient way to solve the problem. Therefore, in this article, two single models are ensembled for wind speed forecasting. Meanwhile, four data pre-processing hybrid models are combined with the reliability weights. The proposed ensemble approaches are simulated on the real wind speed data in the Longdong area of Loess Plateau in China from 2007 to 2015, the experimental results indicate that the ensemble approaches outperform individual models and other hybrid models with different pre-processing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风速预报的集成神经网络方法
风力发电已逐渐发展成为一种重要的能源供应方式。同时,由于蓄电困难,风力发电受风场实时风速的影响较大。一般来说,风速具有非线性、不规则和非平稳的特点,这使得准确的风速预报成为一个难题。近年来的研究表明,结合不同子模型的集合预测方法是解决这一问题的有效途径。因此,本文将两个单一模式组合起来进行风速预报。同时,将4种数据预处理混合模型与可靠性权重相结合。对2007 - 2015年黄土高原陇东地区实测风速数据进行了模拟,结果表明,采用不同预处理方法的集成方法优于单个模型和混合模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Memory Reduction through Experience Classification f or Deep Reinforcement Learning with Prioritized Experience Replay Learning to Design Constellation for AWGN Channel Using Auto-Encoders SIR Beam Selector for Amazon Echo Devices Audio Front-End AVX-512 Based Software Decoding for 5G LDPC Codes Pipelined Implementations for Belief Propagation Polar Decoder: From Formula to Hardware
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1