Efficient selection of signatures for analog/RF alternate test

Manuel J. Barragan Asian, G. Léger
{"title":"Efficient selection of signatures for analog/RF alternate test","authors":"Manuel J. Barragan Asian, G. Léger","doi":"10.1109/ETS.2013.6569362","DOIUrl":null,"url":null,"abstract":"This work proposes a generic methodology for selecting meaningful subsets of indirect measurements (signatures). This allows precise predictions of the DUT performances and/or precise pass/fail classification of the DUT, while minimizing the number of necessary measurements. Two simple figures of merit are provided for ranking sets of signatures a priori, before training any machine learning model. These two figures evaluate the quality of each signature based on its Brownian distance correlation to the target specifications, and on its local distribution in the proximities of the pass/fail decision boundaries. The proposed methodology is illustrated by its direct application to a DC-based alternate test for LNAs.","PeriodicalId":118063,"journal":{"name":"2013 18th IEEE European Test Symposium (ETS)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS.2013.6569362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

This work proposes a generic methodology for selecting meaningful subsets of indirect measurements (signatures). This allows precise predictions of the DUT performances and/or precise pass/fail classification of the DUT, while minimizing the number of necessary measurements. Two simple figures of merit are provided for ranking sets of signatures a priori, before training any machine learning model. These two figures evaluate the quality of each signature based on its Brownian distance correlation to the target specifications, and on its local distribution in the proximities of the pass/fail decision boundaries. The proposed methodology is illustrated by its direct application to a DC-based alternate test for LNAs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有效地选择模拟/射频交替测试的签名
这项工作提出了一种选择有意义的间接测量子集(签名)的通用方法。这可以精确预测DUT的性能和/或精确的DUT合格/不合格分类,同时最大限度地减少必要的测量次数。在训练任何机器学习模型之前,提供了两个简单的价值值来先验地对签名集进行排名。这两个图根据每个签名与目标规范的布朗距离相关性以及其在通过/失败决策边界附近的局部分布来评估每个签名的质量。所提出的方法通过其直接应用于基于dc的LNAs替代测试来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental evaluation of thread distribution effects on multiple output errors in GPUs A layout-aware x-filling approach for dynamic power supply noise reduction in at-speed scan testing RF BIST and test strategy for the receive part of an RF transceiver in CMOS technology Current testing: Dead or alive? Efficient fault simulation through dynamic binary translation for dependability analysis of embedded software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1