Onemax helps optimizing XdivK:: theoretical runtime analysis for RLS and EA+RL

M. Buzdalov, Arina Buzdalova
{"title":"Onemax helps optimizing XdivK:: theoretical runtime analysis for RLS and EA+RL","authors":"M. Buzdalov, Arina Buzdalova","doi":"10.1145/2598394.2598442","DOIUrl":null,"url":null,"abstract":"There exist optimization problems with the target objective, which is to be optimized, and several extra objectives, which can be helpful in the optimization process. The previously proposed EA+RL method is designed to adaptively select objectives during the run of an optimization algorithm in order to reduce the number of evaluations needed to reach an optimum of the target objective. The case when the extra objective is a fine-grained version of the target one is probably the simplest case when using an extra objective actually helps. We define a coarse-grained version of OneMax called XdivK as follows: XdivK(x)= [OneMax(x)/k] for a parameter k which is a divisor of n- the length of a bit vector. We also define XdivK+OneMax, which is a problem where the target objective is XdivK and a single extra objective is OneMax. In this paper, the randomized local search (RLS) is used in the EA+RL method as an optimization algorithm. We construct exact expressions for the expected running time of RLS solving the XdivK problem and of the EA+RL method solving the XdivK+OneMax problem. It is shown that the EA+RL method makes optimization faster, and the speedup is exponential in k.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2598442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

There exist optimization problems with the target objective, which is to be optimized, and several extra objectives, which can be helpful in the optimization process. The previously proposed EA+RL method is designed to adaptively select objectives during the run of an optimization algorithm in order to reduce the number of evaluations needed to reach an optimum of the target objective. The case when the extra objective is a fine-grained version of the target one is probably the simplest case when using an extra objective actually helps. We define a coarse-grained version of OneMax called XdivK as follows: XdivK(x)= [OneMax(x)/k] for a parameter k which is a divisor of n- the length of a bit vector. We also define XdivK+OneMax, which is a problem where the target objective is XdivK and a single extra objective is OneMax. In this paper, the randomized local search (RLS) is used in the EA+RL method as an optimization algorithm. We construct exact expressions for the expected running time of RLS solving the XdivK problem and of the EA+RL method solving the XdivK+OneMax problem. It is shown that the EA+RL method makes optimization faster, and the speedup is exponential in k.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Onemax帮助优化XdivK:: RLS和EA+RL的理论运行时分析
在优化过程中,存在着待优化目标和多个额外目标的优化问题。先前提出的EA+RL方法旨在在优化算法运行过程中自适应选择目标,以减少达到目标目标最优所需的评估次数。当额外目标是目标的细粒度版本时,这可能是使用额外目标确实有帮助的最简单的情况。我们将OneMax的粗粒度版本定义为XdivK,如下所示:XdivK(x)= [OneMax(x)/k],参数k是位向量长度n的除数。我们还定义了XdivK+OneMax,这是一个问题,目标目标是XdivK,而一个额外的目标是OneMax。本文将随机局部搜索(RLS)作为EA+RL方法的优化算法。我们构造了求解XdivK问题的RLS和求解XdivK+OneMax问题的EA+RL方法的期望运行时间的精确表达式。结果表明,EA+RL方法使优化速度更快,并且在k上呈指数增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary synthesis of dynamical systems: the past, current, and future Incremental evolution of HERCL programs for robust control Selecting evolutionary operators using reinforcement learning: initial explorations Flood evolution: changing the evolutionary substrate from a path of stepping stones to a field of rocks Artificial immune systems for optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1