IO interface for over 25Gbps operation with low power

K. Otsuka, F. Fujii, Y. Akiyama, K. Hashimoto
{"title":"IO interface for over 25Gbps operation with low power","authors":"K. Otsuka, F. Fujii, Y. Akiyama, K. Hashimoto","doi":"10.1109/ICSJ.2014.7009615","DOIUrl":null,"url":null,"abstract":"Recent communication for cloud computing strongly requires one order magnitude wider bandwidth than current one, such as over 28Gbps in SerDes and Interlaken protocols. So the technology of IO transmitter and receiver becomes to one of key issues. In generally, those high bandwidth IO systems consume relative high power due to relate with fCV^2 by CMOS transistor and parasitic capacitances. Additional problem is that the transmitter needs to drive long wiring of mother board or plug-in board. Some adaptive equalizer and timing adjust circuits must be implemented in the IO circuit that subsequently requires power consumption. Our research has been aimed to save to quarter times power of current ones even in over 28Gbps band width operation. The key was for balanced concurrent design from chip design to board design and open termination circuit system. These will be mentioned here.","PeriodicalId":362502,"journal":{"name":"IEEE CPMT Symposium Japan 2014","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE CPMT Symposium Japan 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSJ.2014.7009615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Recent communication for cloud computing strongly requires one order magnitude wider bandwidth than current one, such as over 28Gbps in SerDes and Interlaken protocols. So the technology of IO transmitter and receiver becomes to one of key issues. In generally, those high bandwidth IO systems consume relative high power due to relate with fCV^2 by CMOS transistor and parasitic capacitances. Additional problem is that the transmitter needs to drive long wiring of mother board or plug-in board. Some adaptive equalizer and timing adjust circuits must be implemented in the IO circuit that subsequently requires power consumption. Our research has been aimed to save to quarter times power of current ones even in over 28Gbps band width operation. The key was for balanced concurrent design from chip design to board design and open termination circuit system. These will be mentioned here.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IO接口,可实现25Gbps以上的低功耗操作
最近的云计算通信强烈要求比当前的带宽宽一个数量级,例如在SerDes和Interlaken协议中超过28Gbps。因此,IO收发技术成为关键问题之一。一般来说,由于CMOS晶体管和寄生电容与fCV^2有关,这些高带宽IO系统消耗相对较高的功率。另一个问题是发射机需要驱动母板或插件板的长接线。一些自适应均衡器和定时调整电路必须在IO电路中实现,随后需要消耗功率。我们的研究目标是即使在超过28Gbps的带宽下,也能将功耗节省到目前的四分之一。关键是实现从芯片设计到板设计和开路电路系统的平衡并行设计。这些将在这里提到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low power penalty, dry-film polymer waveguides for silicon photonics chip packaging Miniaturized LTE modem SiP using novel multiple compartments shielding Evaluation of thermal interface material with electric capacitance measurement: A new method using metal meshes to present finer surface roughness levels High speed LCP board for 28Gbps transmission through 300mm Visualization of tissue collagen with femtosecond laser: application to skin diagnosis and cell culture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1