juktoMala: A Handwritten Bengali Consonant Conjuncts Dataset for Optical Character Recognition Using BiT-based M-ResNet-101x3 Architecture

M. Hasan, Md. Ali Hossain, Azmain Yakin Srizon, Abu Sayeed
{"title":"juktoMala: A Handwritten Bengali Consonant Conjuncts Dataset for Optical Character Recognition Using BiT-based M-ResNet-101x3 Architecture","authors":"M. Hasan, Md. Ali Hossain, Azmain Yakin Srizon, Abu Sayeed","doi":"10.1109/ECCE57851.2023.10101581","DOIUrl":null,"url":null,"abstract":"Bengali, the seventh most spoken language in the world by the number of speakers, doesn't have a well-established Optical Character Recognition (OCR) system for handwritten texts. One of the major reasons behind this lacking is contributed to having no complete conjuncts database. No dataset available today covers all the conjunct characters that are used by authors around the globe. In this research, we prepared a complete dataset consisting of 292 consonant conjunct characters, which is the biggest consonant conjunct character dataset to date by the number of classes available in the literature to our knowledge. We applied Big Transfer-based M-ResNet-101x3 Deep Convolutional Neural Network (DCNN) which achieves 91.32% accuracy that outperforms the baseline EfficientNetB7 approach which obtained 81.05% accuracy.","PeriodicalId":131537,"journal":{"name":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE57851.2023.10101581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bengali, the seventh most spoken language in the world by the number of speakers, doesn't have a well-established Optical Character Recognition (OCR) system for handwritten texts. One of the major reasons behind this lacking is contributed to having no complete conjuncts database. No dataset available today covers all the conjunct characters that are used by authors around the globe. In this research, we prepared a complete dataset consisting of 292 consonant conjunct characters, which is the biggest consonant conjunct character dataset to date by the number of classes available in the literature to our knowledge. We applied Big Transfer-based M-ResNet-101x3 Deep Convolutional Neural Network (DCNN) which achieves 91.32% accuracy that outperforms the baseline EfficientNetB7 approach which obtained 81.05% accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
juktoMala:基于位的M-ResNet-101x3架构的用于光学字符识别的手写孟加拉辅音连词数据集
孟加拉语是世界上使用人数排名第七的语言,但它并没有一个完善的光学字符识别(OCR)系统来识别手写文本。这种缺乏背后的一个主要原因是没有完整的连词数据库。目前没有可用的数据集涵盖全球作者使用的所有连词字符。在这项研究中,我们准备了一个由292个辅音连词字符组成的完整数据集,这是迄今为止我们所知的文献中可用类数最多的辅音连词数据集。我们采用基于Big transfer的M-ResNet-101x3深度卷积神经网络(DCNN),其准确率达到91.32%,优于基线方法EfficientNetB7,后者准确率为81.05%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclone Prediction Visualization Tools Using Machine Learning Models and Optical Flow Exploratory Perspective of PV Net-Energy-Metering for Residential Prosumers: A Case Study in Dhaka, Bangladesh Estimation of Soil Moisture with Meteorological Variables in Supervised Machine Learning Models Deep CNN-GRU Based Human Activity Recognition with Automatic Feature Extraction Using Smartphone and Wearable Sensors Bengali-English Neural Machine Translation Using Deep Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1