The coefficient of determination in the ridge regression

A. Rodríguez-Sánchez, Román Salmerón-Gómez, Catalina García-García
{"title":"The coefficient of determination in the ridge regression","authors":"A. Rodríguez-Sánchez, Román Salmerón-Gómez, Catalina García-García","doi":"10.1080/03610918.2019.1649421","DOIUrl":null,"url":null,"abstract":"Abstract In a linear regression, the coefficient of determination, R 2, is a relevant measure that represents the percentage of variation in the dependent variable that is explained by a set of independent variables. Thus, it measures the predictive ability of the estimated model. For an ordinary least squares (OLS) estimator, this coefficient is calculated from the decomposition of the sum of squares. However, when the model presents collinearity problems (a strong linear relation between the independent variables), the OLS estimation is unstable, and other estimation methodologies are proposed, with the ridge estimation being the most widely applied. This paper shows that the decomposition of the sum of squares is not verified in the ridge regression and proposes how the coefficient of determination should be calculated in this case.","PeriodicalId":119237,"journal":{"name":"Commun. Stat. Simul. Comput.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commun. Stat. Simul. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03610918.2019.1649421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Abstract In a linear regression, the coefficient of determination, R 2, is a relevant measure that represents the percentage of variation in the dependent variable that is explained by a set of independent variables. Thus, it measures the predictive ability of the estimated model. For an ordinary least squares (OLS) estimator, this coefficient is calculated from the decomposition of the sum of squares. However, when the model presents collinearity problems (a strong linear relation between the independent variables), the OLS estimation is unstable, and other estimation methodologies are proposed, with the ridge estimation being the most widely applied. This paper shows that the decomposition of the sum of squares is not verified in the ridge regression and proposes how the coefficient of determination should be calculated in this case.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
岭回归的决定系数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MCMC4Extremes: an R package for Bayesian inference for extremes and its extensions A Description Method for Formalizing Domain-Specific Modelling Language Reliable Approximated Number System with Exact Bounds and Three-Valued Logic The Definition and Numerical Method of Final Value Problem and Arbitrary Value Problem Robust quadratic discriminant analysis using Sn covariance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1