{"title":"Accelerated stochastic multiplicative update with gradient averaging for nonnegative matrix factorizations","authors":"Hiroyuki Kasai","doi":"10.23919/EUSIPCO.2018.8553610","DOIUrl":null,"url":null,"abstract":"Nonnegative matrix factorization (NMF) is a powerful tool in data analysis by discovering latent features and part-based patterns from high-dimensional data, and is a special case in which factor matrices have low-rank nonnegative constraints. Applying NMF into huge-size matrices, we specifically address stochastic multiplicative update (MU) rule, which is the most popular, but which has slow convergence property. This present paper introduces a gradient averaging technique of stochastic gradient on the stochastic MU rule, and proposes an accelerated stochastic multiplicative update rule: SAGMU. Extensive computational experiments using both synthetic and real-world datasets demonstrate the effectiveness of SAGMU.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Nonnegative matrix factorization (NMF) is a powerful tool in data analysis by discovering latent features and part-based patterns from high-dimensional data, and is a special case in which factor matrices have low-rank nonnegative constraints. Applying NMF into huge-size matrices, we specifically address stochastic multiplicative update (MU) rule, which is the most popular, but which has slow convergence property. This present paper introduces a gradient averaging technique of stochastic gradient on the stochastic MU rule, and proposes an accelerated stochastic multiplicative update rule: SAGMU. Extensive computational experiments using both synthetic and real-world datasets demonstrate the effectiveness of SAGMU.