Use and Validation of Supervised Machine Learning Approach for Detection of GNSS Signal Spoofing

Silvio Semanjski, A. Muls, I. Šemanjski, W. D. Wilde
{"title":"Use and Validation of Supervised Machine Learning Approach for Detection of GNSS Signal Spoofing","authors":"Silvio Semanjski, A. Muls, I. Šemanjski, W. D. Wilde","doi":"10.1109/ICL-GNSS.2019.8752775","DOIUrl":null,"url":null,"abstract":"Spoofing of the GNSS signals presents continuous threat to the users of safety of life applications due to unaware use of false signals in generating position and timing solution. Among numerous anti-spoofing techniques applied at different stages of the signal processing, we present approach of monitoring the cross-correlation of multiple GNSS observables and measurements as an input for supervised machine learning based approach to detect potentially spoofed GNSS signals. Both synthetic, generated in laboratory, and real-world spoofing datasets were used for verification and validation of the supervised machine learning algorithms for detection of the GNSS spoofing.","PeriodicalId":119581,"journal":{"name":"2019 International Conference on Localization and GNSS (ICL-GNSS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Localization and GNSS (ICL-GNSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICL-GNSS.2019.8752775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Spoofing of the GNSS signals presents continuous threat to the users of safety of life applications due to unaware use of false signals in generating position and timing solution. Among numerous anti-spoofing techniques applied at different stages of the signal processing, we present approach of monitoring the cross-correlation of multiple GNSS observables and measurements as an input for supervised machine learning based approach to detect potentially spoofed GNSS signals. Both synthetic, generated in laboratory, and real-world spoofing datasets were used for verification and validation of the supervised machine learning algorithms for detection of the GNSS spoofing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有监督机器学习方法在GNSS信号欺骗检测中的应用与验证
GNSS信号的欺骗由于在生成位置和授时解的过程中不自觉地使用虚假信号,给用户的生命安全应用带来了持续的威胁。在信号处理不同阶段应用的众多反欺骗技术中,我们提出了一种监测多个GNSS观测值和测量值的相互关系的方法,作为基于监督机器学习的方法的输入,以检测潜在的欺骗GNSS信号。实验室生成的合成数据集和真实世界的欺骗数据集用于验证和验证用于检测GNSS欺骗的监督机器学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data from GNSS-Based Passive Radar to Support Flood Monitoring Operations Discrete Positioning Using UWB Channel Impulse Responses and Machine Learning On the Effective Length of Channel Impulse Responses in UWB Single Anchor Localization V2X based Probabilistic Cooperative Position Estimation Applying GNSS Double Differences Blind Spoofing Detection Using a Multi-Antenna Snapshot Receiver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1