Fault diagnosis in hydraulic turbine governor based on BP neural network

Yu Xiaohui, Liao Ruijin, Yao Chenguo
{"title":"Fault diagnosis in hydraulic turbine governor based on BP neural network","authors":"Yu Xiaohui, Liao Ruijin, Yao Chenguo","doi":"10.1109/ICEMS.2001.970680","DOIUrl":null,"url":null,"abstract":"This paper describes a new fault diagnosis model of the hydraulic turbine governing system with the advanced BPNN (backpropagation neural network), which consists of three layers: i.e. input layer (17 neurons), hidden layer, output layer (13 neurons). It is proved that the system can rind the faults correctly in GeZhouBa hydroelectric power station, and it can conduct the faults examination and repair of governing systems. So this diagnosis system should be applied widely in practice.","PeriodicalId":143007,"journal":{"name":"ICEMS'2001. Proceedings of the Fifth International Conference on Electrical Machines and Systems (IEEE Cat. No.01EX501)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICEMS'2001. Proceedings of the Fifth International Conference on Electrical Machines and Systems (IEEE Cat. No.01EX501)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMS.2001.970680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes a new fault diagnosis model of the hydraulic turbine governing system with the advanced BPNN (backpropagation neural network), which consists of three layers: i.e. input layer (17 neurons), hidden layer, output layer (13 neurons). It is proved that the system can rind the faults correctly in GeZhouBa hydroelectric power station, and it can conduct the faults examination and repair of governing systems. So this diagnosis system should be applied widely in practice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于BP神经网络的水轮机调速器故障诊断
本文利用先进的bp神经网络(backpropagation neural network, BPNN)建立了一种新的水轮机控制系统故障诊断模型,该模型由三层组成:输入层(17个神经元)、隐藏层(13个神经元)和输出层(13个神经元)。实践证明,该系统能够正确识别葛洲坝水电站的故障,并能对调节系统进行故障检测和修复。因此,该诊断系统应在实际中得到广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design principles of magnetically controlled reactor The mathematical model and field-oriented control for 15-phase brushless direct current motor with an opened phase A novel starting method for the sensorless salient-pole brushless DC motors Field-circuit optimum combination for permanent magnet machine design and analysis Design and research on variable-frequency speed-regulating electric power dynamometer motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1