Fuzzy Logy for Prediction of Velocity in Channel Bend

P. Durge, P. Nagarnaik
{"title":"Fuzzy Logy for Prediction of Velocity in Channel Bend","authors":"P. Durge, P. Nagarnaik","doi":"10.1109/ICETET.2011.47","DOIUrl":null,"url":null,"abstract":"The flow in channel bend is spiral or helical. It is a movement of water particles in the flow direction. Many researchers have stated mathematical equations to predict velocity in the flow direction in the channel bend. These equations are based on simplified assumptions. The Artificial Neural Network is a viable alternative to predict longitudinal velocity in channel bend. It builds the model by estimating suitable approximating function of available input/output samples. Once such relationship is established, it can be used for prediction of the future behavior. The paper aims at developing ANN model namely Fuzzy logy. It is found that Fuzzy logy model is capable to predict velocity in the channel bend with reasonable accuracy.","PeriodicalId":443239,"journal":{"name":"2011 Fourth International Conference on Emerging Trends in Engineering & Technology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Emerging Trends in Engineering & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETET.2011.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The flow in channel bend is spiral or helical. It is a movement of water particles in the flow direction. Many researchers have stated mathematical equations to predict velocity in the flow direction in the channel bend. These equations are based on simplified assumptions. The Artificial Neural Network is a viable alternative to predict longitudinal velocity in channel bend. It builds the model by estimating suitable approximating function of available input/output samples. Once such relationship is established, it can be used for prediction of the future behavior. The paper aims at developing ANN model namely Fuzzy logy. It is found that Fuzzy logy model is capable to predict velocity in the channel bend with reasonable accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
河道弯道速度预测的模糊方法
通道弯道内的水流呈螺旋状或螺旋状。它是水粒子在流动方向上的运动。许多研究者已经建立了数学方程来预测河道弯道内水流方向的速度。这些方程式是以简化的假设为基础的。人工神经网络是预测河道弯曲纵向速度的一种可行的替代方法。它通过估计可用输入/输出样本的合适近似函数来建立模型。一旦建立了这种关系,就可以用来预测未来的行为。本文旨在发展人工神经网络模型,即模糊理论。结果表明,模糊数学模型能较好地预测河道弯道内的流速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of UWB Interference on WiMAX System A Key Renewal Model for Wireless Sensor Network Under Node Capture Attack A Fuzzy Deduction Graph Model for Computing with Words Human Visual System and Wavelet Transform Based Disparity Estimation A Low Voltage Charge Pump Circuit for RFID Tag EEPROM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1