Importance sampling for model-based reinforcement learning

Orhan Sonmez, A. Cemgil
{"title":"Importance sampling for model-based reinforcement learning","authors":"Orhan Sonmez, A. Cemgil","doi":"10.1109/SIU.2012.6204703","DOIUrl":null,"url":null,"abstract":"Most of the state-of-the-art reinforcement learning algorithms are based on Bellman equations and make use of fixed-point iteration methods to converge to suboptimal solutions. However, some of the recent approaches transform the reinforcement learning problem into an equivalent likelihood maximization problem with using appropriate graphical models. Hence, it allows the adoption of probabilistic inference methods. Here, we propose an expectation-maximization method that employs importance sampling in its E-step in order to estimate the likelihood and then to determine the optimal policy.","PeriodicalId":256154,"journal":{"name":"2012 20th Signal Processing and Communications Applications Conference (SIU)","volume":"30 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2012.6204703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Most of the state-of-the-art reinforcement learning algorithms are based on Bellman equations and make use of fixed-point iteration methods to converge to suboptimal solutions. However, some of the recent approaches transform the reinforcement learning problem into an equivalent likelihood maximization problem with using appropriate graphical models. Hence, it allows the adoption of probabilistic inference methods. Here, we propose an expectation-maximization method that employs importance sampling in its E-step in order to estimate the likelihood and then to determine the optimal policy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型的强化学习的重要性抽样
大多数最先进的强化学习算法都是基于Bellman方程,并利用不动点迭代方法收敛到次优解。然而,最近的一些方法通过使用适当的图形模型将强化学习问题转化为等效的似然最大化问题。因此,它允许采用概率推理方法。在这里,我们提出了一种期望最大化方法,该方法在其e步中使用重要抽样来估计可能性,然后确定最优策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real time FPGA implementation of Full Search video stabilization method MIMO communication theory, algorithms, and prototyping Multiview scene matching using local features and invariant geometric constraints Pulse position modulation based optical spatial modulation over atmospheric turbulence channels On the importance of application based scheduling for femtocell access points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1