Bridging Fuzz Testing and Metamorphic Testing for Classification of Machine Learning

Dongsu Kang
{"title":"Bridging Fuzz Testing and Metamorphic Testing for Classification of Machine Learning","authors":"Dongsu Kang","doi":"10.1109/ICCE53296.2022.9730476","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) built-in Consumer Electronics is popular, but it is hard to test and evaluate AI-based system with the existing performance metrics. Even though AI-based systems are implemented in software with flexibility, bias and non-determinism property etc., they can suffer the same defects as other software. That is why new software testing approaches are needed when testing AI-based systems. Therefore, this paper proposes a bridging approach between fuzz testing and metamorphic testing focus on the classification of machine learning. This approach can be used as a test oracle for classification of training data.","PeriodicalId":350644,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics (ICCE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE53296.2022.9730476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial Intelligence (AI) built-in Consumer Electronics is popular, but it is hard to test and evaluate AI-based system with the existing performance metrics. Even though AI-based systems are implemented in software with flexibility, bias and non-determinism property etc., they can suffer the same defects as other software. That is why new software testing approaches are needed when testing AI-based systems. Therefore, this paper proposes a bridging approach between fuzz testing and metamorphic testing focus on the classification of machine learning. This approach can be used as a test oracle for classification of training data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
桥接模糊测试和变形测试用于机器学习分类
人工智能(AI)内置的消费电子产品很受欢迎,但在现有的性能指标下,很难对基于AI的系统进行测试和评估。尽管基于人工智能的系统在软件中实现具有灵活性、偏差和非确定性等特性,但它们也可能遭受与其他软件相同的缺陷。这就是为什么在测试基于人工智能的系统时需要新的软件测试方法。因此,本文提出了一种介于模糊测试和变质测试之间的桥梁方法,专注于机器学习的分类。这种方法可以作为训练数据分类的测试oracle。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
YOLO-Based Deep Learning Design for In-Cabin Monitoring System with Fisheye-Lens Camera Deep Guidance Decoder with Semantic Boundary Learning for Boundary-Aware Semantic Segmentation Barcode Image Identification Based on Maximum a Posterior Probability Big Data Edge on Consumer Devices for Precision Medicine System of Predicting Dementia Using Transformer Based Ensemble Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1