{"title":"Bridging Fuzz Testing and Metamorphic Testing for Classification of Machine Learning","authors":"Dongsu Kang","doi":"10.1109/ICCE53296.2022.9730476","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) built-in Consumer Electronics is popular, but it is hard to test and evaluate AI-based system with the existing performance metrics. Even though AI-based systems are implemented in software with flexibility, bias and non-determinism property etc., they can suffer the same defects as other software. That is why new software testing approaches are needed when testing AI-based systems. Therefore, this paper proposes a bridging approach between fuzz testing and metamorphic testing focus on the classification of machine learning. This approach can be used as a test oracle for classification of training data.","PeriodicalId":350644,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics (ICCE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE53296.2022.9730476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial Intelligence (AI) built-in Consumer Electronics is popular, but it is hard to test and evaluate AI-based system with the existing performance metrics. Even though AI-based systems are implemented in software with flexibility, bias and non-determinism property etc., they can suffer the same defects as other software. That is why new software testing approaches are needed when testing AI-based systems. Therefore, this paper proposes a bridging approach between fuzz testing and metamorphic testing focus on the classification of machine learning. This approach can be used as a test oracle for classification of training data.