Tianxiong Wang, Gaojie Chen, Mihai-Alin Badiu, J. Coon
{"title":"Stochastic Geometry Analysis for RIS-Assisted Large-Scale Cellular Networks","authors":"Tianxiong Wang, Gaojie Chen, Mihai-Alin Badiu, J. Coon","doi":"10.1109/VTC2022-Fall57202.2022.10012854","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the coverage probability of a reconfigurable intelligent surface (RIS) aided cellular network with the theory of stochastic geometry. A Poisson cluster process (PCP) is applied to model the positions of transmitters (TXs) and RISs, capturing their spatial correlations. Considering the general Nakagami-m fading channel model, we derive the approximate distributions of the composite channel gains with RIS-assisted transmission, representing the desired signal channel and the interference channel, respectively. The coverage probability of the typical user is then obtained. The derived coverage probability is in a closed form, which can be evaluated efficiently. Simulation results are presented to show that the presented analysis is effective, demonstrate the significant performance gains brought by the passive beamforming of a RIS with a large number of elements, and show the impact of TX density on the performance of the proposed system.","PeriodicalId":326047,"journal":{"name":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2022-Fall57202.2022.10012854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we analyze the coverage probability of a reconfigurable intelligent surface (RIS) aided cellular network with the theory of stochastic geometry. A Poisson cluster process (PCP) is applied to model the positions of transmitters (TXs) and RISs, capturing their spatial correlations. Considering the general Nakagami-m fading channel model, we derive the approximate distributions of the composite channel gains with RIS-assisted transmission, representing the desired signal channel and the interference channel, respectively. The coverage probability of the typical user is then obtained. The derived coverage probability is in a closed form, which can be evaluated efficiently. Simulation results are presented to show that the presented analysis is effective, demonstrate the significant performance gains brought by the passive beamforming of a RIS with a large number of elements, and show the impact of TX density on the performance of the proposed system.