{"title":"Using conic correspondences in two images to estimate the epipolar geometry","authors":"Fredrik Kahl, A. Heyden","doi":"10.1109/ICCV.1998.710803","DOIUrl":null,"url":null,"abstract":"In this paper it is shown hour corresponding conics in two images can be used to estimate the epipolar geometry in terms of the fundamental/essential matrix. The corresponding conics can, be images of either planar celtics or silhouettes of quadrics. It is shown that one conic correspondence gives two independent constraints on the fundamental matrix and a method to estimate the fundamental matrix from at least four corresponding conics is presented. Furthermore, a new type of fundamental matrix for describing conic correspondences is introduced. Finally, it is shown that the problem of estimating the fundamental matrix from 5 point correspondences and 1 conic correspondence in general has 10 different solutions. A method to calculate these solutions is also given together with an experimental validation.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"298 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70
Abstract
In this paper it is shown hour corresponding conics in two images can be used to estimate the epipolar geometry in terms of the fundamental/essential matrix. The corresponding conics can, be images of either planar celtics or silhouettes of quadrics. It is shown that one conic correspondence gives two independent constraints on the fundamental matrix and a method to estimate the fundamental matrix from at least four corresponding conics is presented. Furthermore, a new type of fundamental matrix for describing conic correspondences is introduced. Finally, it is shown that the problem of estimating the fundamental matrix from 5 point correspondences and 1 conic correspondence in general has 10 different solutions. A method to calculate these solutions is also given together with an experimental validation.