Prediction of Covid-19 Outbreak Using Machine Learning

Mukul Dhurkunde, M. Trivedi, Nayan Kadam, Sudarshan Kshirsagar
{"title":"Prediction of Covid-19 Outbreak Using Machine Learning","authors":"Mukul Dhurkunde, M. Trivedi, Nayan Kadam, Sudarshan Kshirsagar","doi":"10.55248/gengpi.2022.31291","DOIUrl":null,"url":null,"abstract":"Coronavirus disease 2019 (COVID-19) is spreading rapidly; machine learning algorithms have been applied for a long time in many applications requiring the detection of adverse risk factors. The machine learning model proposed in this research paper uses three types of data, confirmed cases, recovered cases and deaths reported, the model can predict the spread of the virus in the next 20 days, and the data is time line series data and that is effective in predicting new cases of corona, death numbers and recovery.","PeriodicalId":398311,"journal":{"name":"International Journal of Research Publication and Reviews","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Research Publication and Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55248/gengpi.2022.31291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Coronavirus disease 2019 (COVID-19) is spreading rapidly; machine learning algorithms have been applied for a long time in many applications requiring the detection of adverse risk factors. The machine learning model proposed in this research paper uses three types of data, confirmed cases, recovered cases and deaths reported, the model can predict the spread of the virus in the next 20 days, and the data is time line series data and that is effective in predicting new cases of corona, death numbers and recovery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习预测Covid-19爆发
2019冠状病毒病(COVID-19)正在迅速传播;机器学习算法在许多需要检测不利风险因素的应用中已经应用了很长时间。本文提出的机器学习模型使用了确诊病例、康复病例和报告死亡病例三种类型的数据,该模型可以预测未来20天内病毒的传播情况,数据为时间线序列数据,可以有效预测新冠病例、死亡人数和康复情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lip Reading using computer vision techniques and deep learning algorithms for Deaf and Dumb People A Comparative Study of the Use of Instructional Materials, Availability and Utilization in Tertiary Institutions in Kwara State and Kogi State, of North Central Nigeria Phytochemical Screening and Antimicrobial Studies of Unripe Coconut Fluid (Cocus nucifera L) Voice-Based Email System for Visually Impaired QR Code Based Smart Dining System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1