TcT: Temporal and channel Transformer for EEG-based Emotion Recognition

Yanling Liu, Yueying Zhou, Daoqiang Zhang
{"title":"TcT: Temporal and channel Transformer for EEG-based Emotion Recognition","authors":"Yanling Liu, Yueying Zhou, Daoqiang Zhang","doi":"10.1109/CBMS55023.2022.00072","DOIUrl":null,"url":null,"abstract":"In recent years, Electroencephalogram (EEG)-based emotion recognition has developed rapidly and gained increasing attention in the field of brain-computer interface. Relevant studies in the neuroscience domain have shown that various emotional states may activate differently in brain regions and time points. Though the EEG signals have the characteristics of high temporal resolution and strong global correlation, the low signal-to-noise ratio and much redundant information bring challenges to the fast emotion recognition. To cope with the above problem, we propose a Temporal and channel Transformer (TcT) model for emotion recognition, which is directly applied to the raw preprocessed EEG data. In the model, we propose a TcT self-attention mechanism that simultaneously captures temporal and channel dependencies. The sliding window weight sharing strategy is designed to gradually refine the features from coarse time granularity, and reduce the complexity of the attention calculation. The original signal is passed between layers through the residual structure to integrate the features of different layers. We conduct experiments on the DEAP database to verify the effectiveness of the proposed model. The results show that the model achieves better classification performance in less time and with fewer resources than state-of-the-art methods.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, Electroencephalogram (EEG)-based emotion recognition has developed rapidly and gained increasing attention in the field of brain-computer interface. Relevant studies in the neuroscience domain have shown that various emotional states may activate differently in brain regions and time points. Though the EEG signals have the characteristics of high temporal resolution and strong global correlation, the low signal-to-noise ratio and much redundant information bring challenges to the fast emotion recognition. To cope with the above problem, we propose a Temporal and channel Transformer (TcT) model for emotion recognition, which is directly applied to the raw preprocessed EEG data. In the model, we propose a TcT self-attention mechanism that simultaneously captures temporal and channel dependencies. The sliding window weight sharing strategy is designed to gradually refine the features from coarse time granularity, and reduce the complexity of the attention calculation. The original signal is passed between layers through the residual structure to integrate the features of different layers. We conduct experiments on the DEAP database to verify the effectiveness of the proposed model. The results show that the model achieves better classification performance in less time and with fewer resources than state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脑电图的情感识别的时间和通道转换器
近年来,基于脑电图(EEG)的情绪识别技术发展迅速,在脑机接口领域受到越来越多的关注。神经科学领域的相关研究表明,不同的情绪状态在大脑区域和时间点的激活可能不同。虽然脑电信号具有高时间分辨率和强全局相关性的特点,但其低信噪比和大量冗余信息给快速情绪识别带来了挑战。为了解决上述问题,我们提出了一种用于情绪识别的时间和通道变换(TcT)模型,该模型直接应用于原始预处理的脑电数据。在模型中,我们提出了一种同时捕获时间和通道依赖性的TcT自注意机制。滑动窗口权值共享策略旨在从粗时间粒度逐步细化特征,降低注意力计算的复杂度。原始信号通过残差结构在层与层之间传递,以整合不同层的特征。我们在DEAP数据库上进行了实验,以验证所提出模型的有效性。结果表明,该模型在更短的时间和更少的资源下获得了比现有方法更好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrasonic Carotid Blood Flow Velocimetry Based on Deep Complex Neural Network Graph-based Regional Feature Enhancing for Abdominal Multi-Organ Segmentation in CT Exploiting AI to make insulin pens smart: injection site recognition and lipodystrophy detection Subgroup Discovery Analysis of Treatment Patterns in Lung Cancer Patients Estimating Predictive Uncertainty in Gastrointestinal Polyp Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1