Image denoising by independent component analysis based on dyadic wavelet transform

Zhenghong Huang
{"title":"Image denoising by independent component analysis based on dyadic wavelet transform","authors":"Zhenghong Huang","doi":"10.1109/ICWAPR.2009.5207412","DOIUrl":null,"url":null,"abstract":"Based on the dyadic wavelet transform, the threshold and threshold function are obtained adaptive with the decomposition of the dyadic wavelet coefficient by to improve of the lower bound error the noise threshold, and layered processing for threshold function. The noise mixed image was separated denoising by independent component analysis. Experiments show that the proposed method improves the signal-to-noise rate. Moreover, It's better the image precision.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Based on the dyadic wavelet transform, the threshold and threshold function are obtained adaptive with the decomposition of the dyadic wavelet coefficient by to improve of the lower bound error the noise threshold, and layered processing for threshold function. The noise mixed image was separated denoising by independent component analysis. Experiments show that the proposed method improves the signal-to-noise rate. Moreover, It's better the image precision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二进小波变换的独立分量分析图像去噪
在二进小波变换的基础上,通过对二进小波系数进行分解,提高下界误差,对噪声阈值进行分层处理,得到自适应的阈值和阈值函数。采用独立分量分析对混合噪声图像进行分离去噪。实验表明,该方法提高了信号的信噪比。此外,该方法具有更好的图像精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Laplacian Support Vector Machines Intelligent computerized fabric texture recognition system by using Grey-based neural fuzzy clustering A new cooperative algorithm for signal detection Improved algorithm of the Back Propagation neural network and its application in fault diagnosis of air-cooling condenser HSICT: A method for romoving highlight and shading in color image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1