UoM&MMU at TSAR-2022 Shared Task: Prompt Learning for Lexical Simplification

Laura Vásquez-Rodríguez, Nhung T. H. Nguyen, M. Shardlow, S. Ananiadou
{"title":"UoM&MMU at TSAR-2022 Shared Task: Prompt Learning for Lexical Simplification","authors":"Laura Vásquez-Rodríguez, Nhung T. H. Nguyen, M. Shardlow, S. Ananiadou","doi":"10.18653/v1/2022.tsar-1.23","DOIUrl":null,"url":null,"abstract":"We present PromptLS, a method for fine-tuning large pre-trained Language Models (LM) to perform the task of Lexical Simplification. We use a predefined template to attain appropriate replacements for a term, and fine-tune a LM using this template on language specific datasets. We filter candidate lists in post-processing to improve accuracy. We demonstrate that our model can work in a) a zero shot setting (where we only require a pre-trained LM), b) a fine-tuned setting (where language-specific data is required), and c) a multilingual setting (where the model is pre-trained across multiple languages and fine-tuned in an specific language). Experimental results show that, although the zero-shot setting is competitive, its performance is still far from the fine-tuned setting. Also, the multilingual is unsurprisingly worse than the fine-tuned model. Among all TSAR-2022 Shared Task participants, our team was ranked second in Spanish and third in English.","PeriodicalId":247582,"journal":{"name":"Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.tsar-1.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We present PromptLS, a method for fine-tuning large pre-trained Language Models (LM) to perform the task of Lexical Simplification. We use a predefined template to attain appropriate replacements for a term, and fine-tune a LM using this template on language specific datasets. We filter candidate lists in post-processing to improve accuracy. We demonstrate that our model can work in a) a zero shot setting (where we only require a pre-trained LM), b) a fine-tuned setting (where language-specific data is required), and c) a multilingual setting (where the model is pre-trained across multiple languages and fine-tuned in an specific language). Experimental results show that, although the zero-shot setting is competitive, its performance is still far from the fine-tuned setting. Also, the multilingual is unsurprisingly worse than the fine-tuned model. Among all TSAR-2022 Shared Task participants, our team was ranked second in Spanish and third in English.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共享任务:词汇简化的提示学习
我们提出了一种用于微调大型预训练语言模型(LM)以执行词汇简化任务的方法PromptLS。我们使用预定义的模板来获得术语的适当替换,并在特定于语言的数据集上使用该模板对LM进行微调。我们在后处理中过滤候选列表以提高准确性。我们证明了我们的模型可以在a)零射击设置(我们只需要预训练的LM), b)微调设置(需要特定语言的数据)以及c)多语言设置(其中模型跨多种语言进行预训练并在特定语言中进行微调)中工作。实验结果表明,虽然零弹设置具有竞争力,但其性能与微调设置相比仍有很大差距。此外,多语言模式比微调模式更糟糕也就不足为奇了。在所有TSAR-2022共享任务参与者中,我们的团队西班牙语排名第二,英语排名第三。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parallel Corpus Filtering for Japanese Text Simplification teamPN at TSAR-2022 Shared Task: Lexical Simplification using Multi-Level and Modular Approach CENTAL at TSAR-2022 Shared Task: How Does Context Impact BERT-Generated Substitutions for Lexical Simplification? A Benchmark for Neural Readability Assessment of Texts in Spanish A Dataset of Word-Complexity Judgements from Deaf and Hard-of-Hearing Adults for Text Simplification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1