A classifier-based text mining approach for evaluating semantic relatedness using support vector machines

Chung-Hong Lee, Hsin-Chang Yang
{"title":"A classifier-based text mining approach for evaluating semantic relatedness using support vector machines","authors":"Chung-Hong Lee, Hsin-Chang Yang","doi":"10.1109/ITCC.2005.2","DOIUrl":null,"url":null,"abstract":"The quantification of evaluating semantic relatedness among texts has been a challenging issue that pervades much of machine learning and natural language processing. This paper presents a hybrid approach of a text-mining technique for measuring semantic relatedness among texts. In this work we develop several text classifiers using support vector machines (SVM) method to supporting acquisition of relatedness among texts. First, we utilized our developed text mining algorithms, including text mining techniques based on classification of texts in several text collections. After that, we employ various SVM classifiers to deal with evaluation of relatedness of the target documents. The results indicate that this approach can also be fitted to other research work, such as information filtering, and recategorizing resulting documents of search engine queries.","PeriodicalId":326887,"journal":{"name":"International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITCC.2005.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The quantification of evaluating semantic relatedness among texts has been a challenging issue that pervades much of machine learning and natural language processing. This paper presents a hybrid approach of a text-mining technique for measuring semantic relatedness among texts. In this work we develop several text classifiers using support vector machines (SVM) method to supporting acquisition of relatedness among texts. First, we utilized our developed text mining algorithms, including text mining techniques based on classification of texts in several text collections. After that, we employ various SVM classifiers to deal with evaluation of relatedness of the target documents. The results indicate that this approach can also be fitted to other research work, such as information filtering, and recategorizing resulting documents of search engine queries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于分类器的文本挖掘方法,用于使用支持向量机评估语义相关性
评估文本之间语义相关性的量化一直是一个具有挑战性的问题,它遍及机器学习和自然语言处理的许多领域。本文提出了一种文本挖掘技术的混合方法来测量文本之间的语义相关性。在这项工作中,我们使用支持向量机(SVM)方法开发了几个文本分类器来支持文本之间相关性的获取。首先,我们利用我们开发的文本挖掘算法,包括基于几个文本集合中的文本分类的文本挖掘技术。然后,我们使用各种支持向量机分类器来处理目标文档的相关性评估。结果表明,该方法也可以适用于其他研究工作,如信息过滤和搜索引擎查询结果文档的重新分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Component metadata management and publication for the grid A mathematical investigation on retrieval performance evaluation measures of information retrieval algorithm Single-parameter blackjack betting systems inspired by scatter search A time-series biclustering algorithm for revealing co-regulated genes A methodology for evaluating agent toolkits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1