Chang-Jin Jeong, W. Qu, Yang Sun, Dae-Young Yoon, Sok-Kyun Han, S. Lee
{"title":"A 1.5V, 140µA CMOS ultra-low power common-gate LNA","authors":"Chang-Jin Jeong, W. Qu, Yang Sun, Dae-Young Yoon, Sok-Kyun Han, S. Lee","doi":"10.1109/RFIC.2011.5940634","DOIUrl":null,"url":null,"abstract":"This paper presents design guidelines for ultra-low power Low Noise Amplifier (LNA) design by comparing input matching, gain, and noise figure (NF) characteristics of common-source (CS) and common-gate (CG) topologies. A current-reused ultra-low power 2.2 GHz CG LNA is proposed and implemented based on 0.18 um CMOS technology. Measurement results show 13.9 dB power gain, 5.14 dB NF, and −9.3 dBm IIP3, respectively, while dissipating 140 uA from a 1.5 V supply, which shows best figure of merit (FOM) among all published ultra-low power LNAs.","PeriodicalId":448165,"journal":{"name":"2011 IEEE Radio Frequency Integrated Circuits Symposium","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Radio Frequency Integrated Circuits Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2011.5940634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper presents design guidelines for ultra-low power Low Noise Amplifier (LNA) design by comparing input matching, gain, and noise figure (NF) characteristics of common-source (CS) and common-gate (CG) topologies. A current-reused ultra-low power 2.2 GHz CG LNA is proposed and implemented based on 0.18 um CMOS technology. Measurement results show 13.9 dB power gain, 5.14 dB NF, and −9.3 dBm IIP3, respectively, while dissipating 140 uA from a 1.5 V supply, which shows best figure of merit (FOM) among all published ultra-low power LNAs.