MMTF-14K: a multifaceted movie trailer feature dataset for recommendation and retrieval

Yashar Deldjoo, M. Constantin, B. Ionescu, M. Schedl, P. Cremonesi
{"title":"MMTF-14K: a multifaceted movie trailer feature dataset for recommendation and retrieval","authors":"Yashar Deldjoo, M. Constantin, B. Ionescu, M. Schedl, P. Cremonesi","doi":"10.1145/3204949.3208141","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new dataset, i.e., the MMTF-14K multi-faceted dataset. It is primarily designed for the evaluation of video-based recommender systems, but it also supports the exploration of other multimedia tasks such as popularity prediction, genre classification and auto-tagging (aka tag prediction). The data consists of 13,623 Hollywood-type movie trailers, ranked by 138,492 users, generating a total of almost 12.5 million ratings. To address a broader community, metadata, audio and visual descriptors are also pre-computed and provided along with several baseline benchmarking results for uni-modal and multi-modal recommendation systems. This creates a rich collection of data for benchmarking results and which supports future development of this field.","PeriodicalId":141196,"journal":{"name":"Proceedings of the 9th ACM Multimedia Systems Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Multimedia Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3204949.3208141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

In this paper we propose a new dataset, i.e., the MMTF-14K multi-faceted dataset. It is primarily designed for the evaluation of video-based recommender systems, but it also supports the exploration of other multimedia tasks such as popularity prediction, genre classification and auto-tagging (aka tag prediction). The data consists of 13,623 Hollywood-type movie trailers, ranked by 138,492 users, generating a total of almost 12.5 million ratings. To address a broader community, metadata, audio and visual descriptors are also pre-computed and provided along with several baseline benchmarking results for uni-modal and multi-modal recommendation systems. This creates a rich collection of data for benchmarking results and which supports future development of this field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MMTF-14K:用于推荐和检索的多面电影预告片特征数据集
本文提出了一种新的数据集,即MMTF-14K多面数据集。它主要是为评估基于视频的推荐系统而设计的,但它也支持其他多媒体任务的探索,如流行度预测、类型分类和自动标记(又名标签预测)。该数据包括13623部好莱坞类型的电影预告片,由138492名用户进行排名,总共产生了近1250万次评分。为了解决更广泛的问题,还预先计算了元数据、音频和视觉描述符,并为单模态和多模态推荐系统提供了几个基准基准测试结果。这为基准测试结果创建了丰富的数据集,并支持该领域的未来发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual object tracking in a parking garage using compressed domain analysis ISIFT VideoNOC OpenCV.js: computer vision processing for the open web platform Subdiv17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1