Implementation of K-Means Clustering on Poverty Indicators in Indonesia

S. Annas, B. Poerwanto, Sapriani Sapriani, Muhammad Fahmuddin S
{"title":"Implementation of K-Means Clustering on Poverty Indicators in Indonesia","authors":"S. Annas, B. Poerwanto, Sapriani Sapriani, Muhammad Fahmuddin S","doi":"10.30812/matrik.v21i2.1289","DOIUrl":null,"url":null,"abstract":"This study aims to cluster all districts/cities in Indonesia related to poverty indicators. The attributes used are poverty gap index and poverty severity index. The data used comes from BPS. The method used is K-Means clustering, and the results show that by using the elbow and silhouette index methods, the optimal number of clusters is 2, where for cluster 1, it can be defined as a cluster with an area with a high poverty gap index and poverty severity index compared to cluster 2. As a result, cluster 1 has 42 districts/cities, and 472 for cluster 2.","PeriodicalId":364657,"journal":{"name":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/matrik.v21i2.1289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study aims to cluster all districts/cities in Indonesia related to poverty indicators. The attributes used are poverty gap index and poverty severity index. The data used comes from BPS. The method used is K-Means clustering, and the results show that by using the elbow and silhouette index methods, the optimal number of clusters is 2, where for cluster 1, it can be defined as a cluster with an area with a high poverty gap index and poverty severity index compared to cluster 2. As a result, cluster 1 has 42 districts/cities, and 472 for cluster 2.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在印度尼西亚实施k -均值聚类的贫困指标
这项研究的目的是将印度尼西亚与贫困指标有关的所有地区/城市集中起来。使用的属性是贫困差距指数和贫困严重指数。使用的数据来自BPS。采用K-Means聚类方法,结果表明,使用肘形指数和轮廓指数方法,聚类的最优数量为2个,其中对于聚类1,可以定义为其所在区域的贫困差距指数和贫困严重程度指数高于聚类2。因此,集群1有42个区/市,集群2有472个区/市。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of Port Knocking with Telegram Notifications to Protect Against Scanner Vulnerabilities Intelligent System for Internet of Things-Based Building Fire Safety with Naive Bayes Algorithm Detecting Disaster Trending Topics on Indonesian Tweets Using BNgram Electronic Tourism Using Decision Support Systems to Optimize the Trips Optimizing Inventory with Frequent Pattern Growth Algorithm for Small and Medium Enterprises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1