Security-Aware Network Analysis for Network Controllability

Shuo Zhang, S. Wolthusen
{"title":"Security-Aware Network Analysis for Network Controllability","authors":"Shuo Zhang, S. Wolthusen","doi":"10.1109/WAINA.2018.00136","DOIUrl":null,"url":null,"abstract":"Although people use critical, redundant and ordinary categories to concisely distinguish the importance of edges in maintaining controllability of networks in linear time-invariant (LTI) model, a specific network analysis is still uncertain to confirm edges of each category for further edge protection. Given a large, sparse, Erdős-Rényi random digraph with a precomputed maximum matching in LTI model as an input network, we address the problem of efficiently classifying its all edges into those categories. By the minimal input theorem, classifying an edge into one of those categories is modeled into analysing the number of maximum matchings having it, while it is solved by finding maximally-matchable edges via a bipartite graph mapped by the input network. In the worst case, entire edge classification is executed in linear time except for precomputing a maximum matching of the input network.","PeriodicalId":296466,"journal":{"name":"2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2018.00136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Although people use critical, redundant and ordinary categories to concisely distinguish the importance of edges in maintaining controllability of networks in linear time-invariant (LTI) model, a specific network analysis is still uncertain to confirm edges of each category for further edge protection. Given a large, sparse, Erdős-Rényi random digraph with a precomputed maximum matching in LTI model as an input network, we address the problem of efficiently classifying its all edges into those categories. By the minimal input theorem, classifying an edge into one of those categories is modeled into analysing the number of maximum matchings having it, while it is solved by finding maximally-matchable edges via a bipartite graph mapped by the input network. In the worst case, entire edge classification is executed in linear time except for precomputing a maximum matching of the input network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向网络可控性的安全感知网络分析
在线性时不变(LTI)模型中,尽管人们使用临界、冗余和普通分类来简洁地区分边对保持网络可控性的重要性,但具体的网络分析仍然无法确定每个类别的边以进一步保护边缘。给定一个大型的、稀疏的、Erdős-Rényi随机有向图,其在LTI模型中具有预先计算的最大匹配作为输入网络,我们解决了有效地将其所有边分类到这些类别中的问题。根据最小输入定理,将一条边划分为这些类别中的一个,并将其建模为分析具有该类别的最大匹配数,而通过输入网络映射的二部图找到最大匹配边来解决该问题。在最坏的情况下,除了预先计算输入网络的最大匹配外,整个边缘分类在线性时间内执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-agent Based Simulations of Block-Free Distributed Ledgers Mobility Management Architecture in Different RATs Based Network Slicing Apply Scikit-Learn in Python to Analyze Driver Behavior Based on OBD Data Proposal of Static Body Object Detection Methods with the DTN Routing for Life Safety Information Systems Resource Allocation Scheme in 5G Network Slices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1