Chi-Pan Hwang, Mu-Song Chen, Chih-Min Shih, Hsing-Yu Chen, Wen-Kai Liu
{"title":"Apply Scikit-Learn in Python to Analyze Driver Behavior Based on OBD Data","authors":"Chi-Pan Hwang, Mu-Song Chen, Chih-Min Shih, Hsing-Yu Chen, Wen-Kai Liu","doi":"10.1109/WAINA.2018.00159","DOIUrl":null,"url":null,"abstract":"The long term accumulated driving information can effectively summarize the specific driver behavior by statistical analysis. In order to widely and chronically collect driving information of drivers, the cloud computing platform is the most suitable mechanism to log the dynamic vehicle information stream from OBD port to build up Big Data for data mining about driver behavior, currently. The research of this paper has focused on the application layer in the cloud computing platform, Python has been adopted to as the main development tool accompanying with the packages of numpy, pandas, and scipy to calculate the kurtosis and skewness in statistics of each driving route, then decision tree classification technique was applied to generate the analyzing knowledge for driver behavior analysis. Finally the driver behavior are summarized from the completed decision tree classifier to defensive, weak defensive, weak aggressive, and aggressive to complete the overall operations.","PeriodicalId":296466,"journal":{"name":"2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2018.00159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
The long term accumulated driving information can effectively summarize the specific driver behavior by statistical analysis. In order to widely and chronically collect driving information of drivers, the cloud computing platform is the most suitable mechanism to log the dynamic vehicle information stream from OBD port to build up Big Data for data mining about driver behavior, currently. The research of this paper has focused on the application layer in the cloud computing platform, Python has been adopted to as the main development tool accompanying with the packages of numpy, pandas, and scipy to calculate the kurtosis and skewness in statistics of each driving route, then decision tree classification technique was applied to generate the analyzing knowledge for driver behavior analysis. Finally the driver behavior are summarized from the completed decision tree classifier to defensive, weak defensive, weak aggressive, and aggressive to complete the overall operations.