On Non-Linearity and Convergence in Non-Linear Least Squares

O. Kurt
{"title":"On Non-Linearity and Convergence in Non-Linear Least Squares","authors":"O. Kurt","doi":"10.5772/INTECHOPEN.76313","DOIUrl":null,"url":null,"abstract":"To interpret and explain the mechanism of an engineering problem, the redundant observations are carried out by scientists and engineers. The functional relationships between the observations and parameters defining the model are generally nonlinear. Those relationships are constituted by a nonlinear equation system. The equations of the system are not solved without using linearization of them on the computer. If the linearized equations are consistent, the solution of the system is ensured for a probably global minimum quickly by any approximated values of the parameters in the least squares (LS). Otherwise, namely an inconsistent case, the convergence of the solution needs to be well-determined approximate values for the global minimum solution even if in LS. A numerical example for 3D space fixes coordinates of an artificial global navigation satellite system (GNSS) satellite modeled by a simple combination of firstdegree polynomial and first-order trigonometric functions will be given. It will be shown by the real example that the convergence of the solution depends on the approximated values of the model parameters.","PeriodicalId":337657,"journal":{"name":"Optimization Algorithms - Examples","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Algorithms - Examples","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.76313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To interpret and explain the mechanism of an engineering problem, the redundant observations are carried out by scientists and engineers. The functional relationships between the observations and parameters defining the model are generally nonlinear. Those relationships are constituted by a nonlinear equation system. The equations of the system are not solved without using linearization of them on the computer. If the linearized equations are consistent, the solution of the system is ensured for a probably global minimum quickly by any approximated values of the parameters in the least squares (LS). Otherwise, namely an inconsistent case, the convergence of the solution needs to be well-determined approximate values for the global minimum solution even if in LS. A numerical example for 3D space fixes coordinates of an artificial global navigation satellite system (GNSS) satellite modeled by a simple combination of firstdegree polynomial and first-order trigonometric functions will be given. It will be shown by the real example that the convergence of the solution depends on the approximated values of the model parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性最小二乘的非线性与收敛性
为了解释和解释工程问题的机理,科学家和工程师进行了重复的观察。观测值与定义模型的参数之间的函数关系通常是非线性的。这些关系由一个非线性方程组构成。该系统的方程必须在计算机上进行线性化处理才能解出。如果线性化方程是一致的,则系统的解可以通过最小二乘(LS)中参数的任何近似值快速地保证为可能的全局最小值。否则,即不一致的情况下,即使在LS中,解的收敛性也需要是全局最小解的良好确定的近似值。给出了用一阶多项式和一阶三角函数的简单组合建模的全球卫星导航系统(GNSS)卫星三维空间定位坐标的数值算例。通过实例说明,解的收敛性取决于模型参数的近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bilevel Disjunctive Optimization on Affine Manifolds A Gradient Multiobjective Particle Swarm Optimization Piecewise Parallel Optimal Algorithm Multicriteria Support for Group Decision Making On Non-Linearity and Convergence in Non-Linear Least Squares
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1