Scalable Saliency-Aware Distributed Compressive Video Sensing

Jin Xu, S. Djahel, Yuansong Qiao
{"title":"Scalable Saliency-Aware Distributed Compressive Video Sensing","authors":"Jin Xu, S. Djahel, Yuansong Qiao","doi":"10.1109/ISM.2015.54","DOIUrl":null,"url":null,"abstract":"Distributed compressive video sensing (DCVS) is an emerging low-complexity video coding framework which integrates the merits of distributed video coding (DVC) and compressive sensing (CS). Because the human visual system (HVS) is the ultimate receiver of visual signals, we aim to improve the perceptual rate-distortion performance of DCVS by designing a novel scalable saliency-aware DCVS codec. Firstly, we perform saliency estimation in the the side information (SI) frame generated at the decoder side and adaptively control the size of region-of-interest (ROI) according to the measurements budget by applying a saliency guided foveation model. Subsequently, based on online estimation of the correlation noise between a non-key frame and its SI, we develop a saliency-aware block compressive sensing scheme to more accurately reconstruct the ROI of each non-key frame. The obtained experimental results reveal that our DCVS codec outperforms the legacy DCVS codecs in terms of the perceptual rate-distortion performance.","PeriodicalId":250353,"journal":{"name":"2015 IEEE International Symposium on Multimedia (ISM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2015.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Distributed compressive video sensing (DCVS) is an emerging low-complexity video coding framework which integrates the merits of distributed video coding (DVC) and compressive sensing (CS). Because the human visual system (HVS) is the ultimate receiver of visual signals, we aim to improve the perceptual rate-distortion performance of DCVS by designing a novel scalable saliency-aware DCVS codec. Firstly, we perform saliency estimation in the the side information (SI) frame generated at the decoder side and adaptively control the size of region-of-interest (ROI) according to the measurements budget by applying a saliency guided foveation model. Subsequently, based on online estimation of the correlation noise between a non-key frame and its SI, we develop a saliency-aware block compressive sensing scheme to more accurately reconstruct the ROI of each non-key frame. The obtained experimental results reveal that our DCVS codec outperforms the legacy DCVS codecs in terms of the perceptual rate-distortion performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可扩展显著性感知分布式压缩视频感知
分布式压缩视频感知(DCVS)是一种新兴的低复杂度视频编码框架,它融合了分布式视频编码(DVC)和压缩感知(CS)的优点。由于人类视觉系统(HVS)是视觉信号的最终接收者,我们旨在通过设计一种新颖的可扩展显著性感知DCVS编解码器来提高DCVS的感知率失真性能。首先,我们对解码器侧生成的侧信息帧进行显著性估计,并应用显著性引导注视点模型根据测量预算自适应控制感兴趣区域(ROI)的大小。随后,基于在线估计非关键帧与其SI之间的相关噪声,我们开发了一种显著性感知的块压缩感知方案,以更准确地重建每个非关键帧的ROI。实验结果表明,我们的DCVS编解码器在感知率失真性能方面优于传统的DCVS编解码器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of the HEVC Coding Efficiency Advance Using 20 Scenes, ITU-T Rec. P.913 Compliant Subjective Methods, VQM, and PSNR Modelling Video Rate Evolution in Adaptive Bitrate Selection SDN Based QoE Optimization for HTTP-Based Adaptive Video Streaming Evaluation of Feature Detection in HDR Based Imaging Under Changes in Illumination Conditions Collaborative Rehabilitation Support System: A Comprehensive Solution for Everyday Rehab
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1