Data Driven Strip Crown Prediction for a Hot Strip Rolling Mill Process

Yanyan Zhang, Kai Zhang, Pengcheng Yang, Kai-xiang Peng
{"title":"Data Driven Strip Crown Prediction for a Hot Strip Rolling Mill Process","authors":"Yanyan Zhang, Kai Zhang, Pengcheng Yang, Kai-xiang Peng","doi":"10.1109/DDCLS58216.2023.10166447","DOIUrl":null,"url":null,"abstract":"Due to the difficulty in strip crown prediction caused by multivariable, nonlinear and strong coupling in the hot strip rolling mill (HSRM) process, this paper proposes a strip crown prediction model based on support vector regression (SVR), and uses sparrow search algorithm (SSA) to optimize the parameter C and $\\sigma$ of the model, so as to improve the generalization ability of the prediction model. The overall performance of the model is evaluated by mean square error (MSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and correlation coefficient $(R^{2})$. It shows that the prediction accuracy and generalization ability of the proposed model are better than the traditional methods. The proposed SSA-SVR model in this paper is successfully applied to the crown prediction of the 2150 production line of Ansteel company. The performance shows that the method can be efficient to predict the steel crown in a real HSRM process.","PeriodicalId":415532,"journal":{"name":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS58216.2023.10166447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the difficulty in strip crown prediction caused by multivariable, nonlinear and strong coupling in the hot strip rolling mill (HSRM) process, this paper proposes a strip crown prediction model based on support vector regression (SVR), and uses sparrow search algorithm (SSA) to optimize the parameter C and $\sigma$ of the model, so as to improve the generalization ability of the prediction model. The overall performance of the model is evaluated by mean square error (MSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and correlation coefficient $(R^{2})$. It shows that the prediction accuracy and generalization ability of the proposed model are better than the traditional methods. The proposed SSA-SVR model in this paper is successfully applied to the crown prediction of the 2150 production line of Ansteel company. The performance shows that the method can be efficient to predict the steel crown in a real HSRM process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据驱动的热轧带钢凸度预测
针对热连轧(HSRM)过程中多变量、非线性和强耦合给带钢冠预测带来的困难,本文提出了一种基于支持向量回归(SVR)的带钢冠预测模型,并利用麻雀搜索算法(SSA)对模型的参数C和$\sigma$进行优化,以提高预测模型的泛化能力。通过均方误差(MSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和相关系数$(R^{2})$来评价模型的整体性能。结果表明,该模型的预测精度和泛化能力均优于传统方法。本文提出的SSA-SVR模型成功地应用于鞍钢2150生产线的冠度预测。实验结果表明,该方法能够有效地预测实际高温淬火过程中钢的冠形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on target grab of leg-arm cooperative robot based on vision A Review of Sound Source Localization Research in Three-Dimensional Space Improved Mixed Discrete Particle Swarms based Multi-task Assignment for UAVs Dynamical linearization based PLS modeling and model-free adaptive control Hidden Markov model based finite-time H∞ guaranteed cost control for singular discrete-time Markov jump delay systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1