Fault Detection Approach Based on Weighted Principal ComponentAnalysis Applied to Continuous Stirred Tank Reactor

Shanmao Gu, Yunlong Liu, Ni Zhang, Dexin Du
{"title":"Fault Detection Approach Based on Weighted Principal ComponentAnalysis Applied to Continuous Stirred Tank Reactor","authors":"Shanmao Gu, Yunlong Liu, Ni Zhang, Dexin Du","doi":"10.2174/1874155X01509010966","DOIUrl":null,"url":null,"abstract":"Fault detection approach based on principal component analysis (PCA) may perform not well when the process is time-varying, because it can cause unfavorable influence on feature extraction. To solve this problem, a modified PCA which considering variance maximization is proposed, referred to as weighted PCA (WPCA). WPCA can obtain the slow features information of observed data in time-varying system. The monitoring statistical indices are based on WPCA model and their confidence limits are computed by kernel density estimation (KDE). A simulation example on continuous stirred tank reactor (CSTR) show that the proposed method achieves better performance from the perspective of both fault detection rate and fault detection time than conventional PCA model.","PeriodicalId":267392,"journal":{"name":"The Open Mechanical Engineering Journal","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Mechanical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874155X01509010966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Fault detection approach based on principal component analysis (PCA) may perform not well when the process is time-varying, because it can cause unfavorable influence on feature extraction. To solve this problem, a modified PCA which considering variance maximization is proposed, referred to as weighted PCA (WPCA). WPCA can obtain the slow features information of observed data in time-varying system. The monitoring statistical indices are based on WPCA model and their confidence limits are computed by kernel density estimation (KDE). A simulation example on continuous stirred tank reactor (CSTR) show that the proposed method achieves better performance from the perspective of both fault detection rate and fault detection time than conventional PCA model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于加权主成分分析的连续搅拌釜故障检测方法
基于主成分分析(PCA)的故障检测方法在过程时变时可能会对特征提取产生不利影响,导致检测效果不佳。为了解决这一问题,提出了一种考虑方差最大化的改进PCA,称为加权PCA (weighted PCA)。WPCA可以获取时变系统中观测数据的慢特征信息。监测统计指标基于WPCA模型,利用核密度估计(KDE)计算其置信限。对连续搅拌槽式反应器(CSTR)的仿真实例表明,该方法在故障检测率和故障检测时间上都优于传统的主成分分析模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wear and Corrosion Resistance of Hardened Fe-Al-Mn Grinding Ball Revised Lewis Bending Stress Capacity Model The Efficient and Tentative Model for Extenics Replications of the Moveable Robots Controllable Magnetoactive Polymer Conduit Experimental Studying of the Variations of Surface Roughness and Dimensional Accuracy in Dry Hard Turning Operation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1