{"title":"Molecular dynamics simulation of crack propagation on different slip planes of BCC iron","authors":"Yuan Gao, Cheng Lu, A. K. Tieu, Hongtao Zhu","doi":"10.1109/ICONN.2008.4639288","DOIUrl":null,"url":null,"abstract":"In this paper, molecular dynamic simulations of crack propagation in body centre cubic (bcc) single crystal have been performed. The crack propagation behaviors on two different slip planes ({1 1 0} and {2 1 1}) have been investigated. A self-adaptive time step algorithm has been proposed to increase the stability of the simulations. It has been found that the slip plane significantly affects the propagation speed of the crack.","PeriodicalId":192889,"journal":{"name":"2008 International Conference on Nanoscience and Nanotechnology","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONN.2008.4639288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In this paper, molecular dynamic simulations of crack propagation in body centre cubic (bcc) single crystal have been performed. The crack propagation behaviors on two different slip planes ({1 1 0} and {2 1 1}) have been investigated. A self-adaptive time step algorithm has been proposed to increase the stability of the simulations. It has been found that the slip plane significantly affects the propagation speed of the crack.