{"title":"Obstructive sleep-disordered breathing in children: Impact on the developing brain","authors":"L. Walter, Rosemary C Horne","doi":"10.4103/PRCM.PRCM_16_18","DOIUrl":null,"url":null,"abstract":"Obstructive sleep-disordered breathing (SDB) affects up to 11% of children and forms a continuum of severity ranging from primary snoring to obstructive sleep apnea. Children with SDB exhibit significant neurocognitive and cardiovascular dysfunction, which is associated with repetitive hypoxia and sleep fragmentation that characterize the condition. We reviewed the recent literature pertaining to the effect of SDB on the brain in children. These include studies that utilized near-infrared spectroscopy to determine cerebral oxygenation and structural and functional magnetic resonance imaging (MRI) of the brain. Studies have identified that the effect of SDB on cerebral oxygenation in children is minimal and not clinically significant. There are conflicting reports on the association between the measures of cerebral oxygenation and peripheral arterial oxygen saturation (SpO2), and further research needs to be conducted to elucidate the relationship between peripheral SpO2, cerebral oxygenation, and SDB in children. MRI studies have reported significant structural and functional changes to the brains of children with SDB, in brain regions associated with neurocognition, behavior, and autonomic function. These include reduced white and gray matter and structural changes to a multitude of brain areas including, but not limited to, the hippocampus, cortex, amygdala, insula, thalamus, cerebellum, and basal ganglia. These studies utilize a variety of MRI techniques to address different research questions, but contribute to the gradually developing picture of the adverse effects of SDB on the brain in children.","PeriodicalId":273845,"journal":{"name":"Pediatric Respirology and Critical Care Medicine","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Respirology and Critical Care Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/PRCM.PRCM_16_18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Obstructive sleep-disordered breathing (SDB) affects up to 11% of children and forms a continuum of severity ranging from primary snoring to obstructive sleep apnea. Children with SDB exhibit significant neurocognitive and cardiovascular dysfunction, which is associated with repetitive hypoxia and sleep fragmentation that characterize the condition. We reviewed the recent literature pertaining to the effect of SDB on the brain in children. These include studies that utilized near-infrared spectroscopy to determine cerebral oxygenation and structural and functional magnetic resonance imaging (MRI) of the brain. Studies have identified that the effect of SDB on cerebral oxygenation in children is minimal and not clinically significant. There are conflicting reports on the association between the measures of cerebral oxygenation and peripheral arterial oxygen saturation (SpO2), and further research needs to be conducted to elucidate the relationship between peripheral SpO2, cerebral oxygenation, and SDB in children. MRI studies have reported significant structural and functional changes to the brains of children with SDB, in brain regions associated with neurocognition, behavior, and autonomic function. These include reduced white and gray matter and structural changes to a multitude of brain areas including, but not limited to, the hippocampus, cortex, amygdala, insula, thalamus, cerebellum, and basal ganglia. These studies utilize a variety of MRI techniques to address different research questions, but contribute to the gradually developing picture of the adverse effects of SDB on the brain in children.