Model-based iterative reconstruction for neutron laminography

S. Venkatakrishnan, E. Cakmak, Hassina Billheux, P. Bingham, Richard Archibald
{"title":"Model-based iterative reconstruction for neutron laminography","authors":"S. Venkatakrishnan, E. Cakmak, Hassina Billheux, P. Bingham, Richard Archibald","doi":"10.1109/ACSSC.2017.8335686","DOIUrl":null,"url":null,"abstract":"Neutron-based parallel-beam laminography is an important 3D characterization tool because it can image thick specimens with unique shapes and provides a complimentary contrast to X-rays for several elements relevant to the material sciences and biology. However, the inversion of neutron laminography data is complicated because of the non-traditional geometry of the set-up, the presence of noise and the occurrence of gamma hits on the detector during the course of an experiment. In this paper, we present a model-based/regularized-inversion reconstruction algorithm for neutron laminography. We introduce a new forward-model/data fitting term and combine it with a flexible regularizer function to formulate the reconstruction as minimizing a cost-function. We then present a novel optimization algorithm that is based on combining a majorization-minimization technique with a first-order method that is amenable to simple parallelization on multi-core architectures. Using simulated and experimental data, we demonstrate that it is possible to acquire high quality reconstructions compared to the typically used filtered-back projection algorithm and algebraic reconstruction techniques.","PeriodicalId":296208,"journal":{"name":"2017 51st Asilomar Conference on Signals, Systems, and Computers","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 51st Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Neutron-based parallel-beam laminography is an important 3D characterization tool because it can image thick specimens with unique shapes and provides a complimentary contrast to X-rays for several elements relevant to the material sciences and biology. However, the inversion of neutron laminography data is complicated because of the non-traditional geometry of the set-up, the presence of noise and the occurrence of gamma hits on the detector during the course of an experiment. In this paper, we present a model-based/regularized-inversion reconstruction algorithm for neutron laminography. We introduce a new forward-model/data fitting term and combine it with a flexible regularizer function to formulate the reconstruction as minimizing a cost-function. We then present a novel optimization algorithm that is based on combining a majorization-minimization technique with a first-order method that is amenable to simple parallelization on multi-core architectures. Using simulated and experimental data, we demonstrate that it is possible to acquire high quality reconstructions compared to the typically used filtered-back projection algorithm and algebraic reconstruction techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型的中子层析迭代重建
基于中子的平行束层析成像是一种重要的3D表征工具,因为它可以成像具有独特形状的厚样品,并为与材料科学和生物学相关的几个元素提供与x射线的互补对比。然而,中子层析数据的反演是复杂的,因为非传统的几何结构,存在的噪声和伽玛命中的探测器在实验过程中。本文提出了一种基于模型/正则化反演的中子层析重建算法。我们引入了一个新的前向模型/数据拟合项,并将其与一个灵活的正则化函数结合起来,将重构表述为最小化成本函数。然后,我们提出了一种新的优化算法,该算法基于最大化最小化技术和一阶方法的结合,该方法适用于多核架构上的简单并行化。利用模拟和实验数据,我们证明了与通常使用的滤波后向投影算法和代数重建技术相比,它可以获得高质量的重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
milliProxy: A TCP proxy architecture for 5G mmWave cellular systems Joint user scheduling and power optimization in full-duplex cells with successive interference cancellation Deep neural network architectures for modulation classification Towards provably invisible network flow fingerprints Seeded graph matching: Efficient algorithms and theoretical guarantees
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1