Performance Analysis of Tile Low-Rank Cholesky Factorization Using PaRSEC Instrumentation Tools

Qinglei Cao, Yu Pei, T. Hérault, Kadir Akbudak, A. Mikhalev, G. Bosilca, H. Ltaief, D. Keyes, J. Dongarra
{"title":"Performance Analysis of Tile Low-Rank Cholesky Factorization Using PaRSEC Instrumentation Tools","authors":"Qinglei Cao, Yu Pei, T. Hérault, Kadir Akbudak, A. Mikhalev, G. Bosilca, H. Ltaief, D. Keyes, J. Dongarra","doi":"10.1109/ProTools49597.2019.00009","DOIUrl":null,"url":null,"abstract":"This paper highlights the necessary development of new instrumentation tools within the PaRSE task-based runtime system to leverage the performance of low-rank matrix computations. In particular, the tile low-rank (TLR) Cholesky factorization represents one of the most critical matrix operations toward solving challenging large-scale scientific applications. The challenge resides in the heterogeneous arithmetic intensity of the various computational kernels, which stresses PaRSE's dynamic engine when orchestrating the task executions at runtime. Such irregular workload imposes the deployment of new scheduling heuristics to privilege the critical path, while exposing task parallelism to maximize hardware occupancy. To measure the effectiveness of PaRSE's engine and its various scheduling strategies for tackling such workloads, it becomes paramount to implement adequate performance analysis and profiling tools tailored to fine-grained and heterogeneous task execution. This permits us not only to provide insights from PaRSE, but also to identify potential applications' performance bottlenecks. These instrumentation tools may actually foster synergism between applications and PaRSE developers for productivity as well as high-performance computing purposes. We demonstrate the benefits of these amenable tools, while assessing the performance of TLR Cholesky factorization from data distribution, communication-reducing and synchronization-reducing perspectives. This tool-assisted performance analysis results in three major contributions: a new hybrid data distribution, a new hierarchical TLR Cholesky algorithm, and a new performance model for tuning the tile size. The new TLR Cholesky factorization achieves an 8X performance speedup over existing implementations on massively parallel supercomputers, toward solving large-scale 3D climate and weather prediction applications.","PeriodicalId":418029,"journal":{"name":"2019 IEEE/ACM International Workshop on Programming and Performance Visualization Tools (ProTools)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Workshop on Programming and Performance Visualization Tools (ProTools)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ProTools49597.2019.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper highlights the necessary development of new instrumentation tools within the PaRSE task-based runtime system to leverage the performance of low-rank matrix computations. In particular, the tile low-rank (TLR) Cholesky factorization represents one of the most critical matrix operations toward solving challenging large-scale scientific applications. The challenge resides in the heterogeneous arithmetic intensity of the various computational kernels, which stresses PaRSE's dynamic engine when orchestrating the task executions at runtime. Such irregular workload imposes the deployment of new scheduling heuristics to privilege the critical path, while exposing task parallelism to maximize hardware occupancy. To measure the effectiveness of PaRSE's engine and its various scheduling strategies for tackling such workloads, it becomes paramount to implement adequate performance analysis and profiling tools tailored to fine-grained and heterogeneous task execution. This permits us not only to provide insights from PaRSE, but also to identify potential applications' performance bottlenecks. These instrumentation tools may actually foster synergism between applications and PaRSE developers for productivity as well as high-performance computing purposes. We demonstrate the benefits of these amenable tools, while assessing the performance of TLR Cholesky factorization from data distribution, communication-reducing and synchronization-reducing perspectives. This tool-assisted performance analysis results in three major contributions: a new hybrid data distribution, a new hierarchical TLR Cholesky algorithm, and a new performance model for tuning the tile size. The new TLR Cholesky factorization achieves an 8X performance speedup over existing implementations on massively parallel supercomputers, toward solving large-scale 3D climate and weather prediction applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用PaRSEC仪器工具的Tile低秩Cholesky分解性能分析
本文强调了在PaRSE基于任务的运行时系统中开发新的仪器工具的必要性,以利用低秩矩阵计算的性能。特别是,低秩(TLR) Cholesky分解是解决具有挑战性的大规模科学应用的最关键的矩阵运算之一。挑战在于各种计算内核的异构算术强度,这在运行时编排任务执行时对PaRSE的动态引擎造成压力。这种不规则的工作负载要求部署新的调度启发式方法来对关键路径授予特权,同时暴露任务并行性以最大化硬件占用。为了衡量PaRSE引擎及其各种调度策略处理此类工作负载的有效性,实现适合细粒度和异构任务执行的充分的性能分析和分析工具变得至关重要。这不仅允许我们提供来自PaRSE的见解,还允许我们识别潜在的应用程序性能瓶颈。这些工具实际上可以促进应用程序和PaRSE开发人员之间的协同,以提高生产力和高性能计算的目的。我们展示了这些可适应工具的好处,同时从数据分布、减少通信和减少同步的角度评估了TLR Cholesky分解的性能。这个工具辅助的性能分析产生了三个主要贡献:一个新的混合数据分布,一个新的分层TLR Cholesky算法,以及一个用于调整tile大小的新性能模型。新的TLR Cholesky分解在大规模并行超级计算机上实现了8倍的性能加速,用于解决大规模3D气候和天气预报应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CHAMPVis: Comparative Hierarchical Analysis of Microarchitectural Performance Multi-Level Performance Instrumentation for Kokkos Applications Using TAU Performance Analysis of Tile Low-Rank Cholesky Factorization Using PaRSEC Instrumentation Tools [Title page] In Situ Visualization of Performance Metrics in Multiple Domains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1