Frame-Wise CNN-Based View Synthesis for Light Field Camera Arrays

I. Schiopu, Patrice Rondao-Alface, A. Munteanu
{"title":"Frame-Wise CNN-Based View Synthesis for Light Field Camera Arrays","authors":"I. Schiopu, Patrice Rondao-Alface, A. Munteanu","doi":"10.1109/IC3D48390.2019.8975901","DOIUrl":null,"url":null,"abstract":"The paper proposes a novel frame-wise view synthesis method based on convolutional neural networks (CNNs) for wide-baseline light field (LF) camera arrays. A novel neural network architecture that follows a multi-resolution processing paradigm is employed to synthesize an entire view. A novel loss function formulation based on the structural similarity index (SSIM) is proposed. A wide-baseline LF image dataset is generated and employed to train the proposed deep model. The proposed method synthesizes each subaperture image (SAI) from a LF image based on corresponding SAIs from two reference LF images. Experimental results show that the proposed method yields promising results with an average PSNR and SSIM of 34.71 dB and 0.9673 respectively for wide baselines.","PeriodicalId":344706,"journal":{"name":"2019 International Conference on 3D Immersion (IC3D)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on 3D Immersion (IC3D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3D48390.2019.8975901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper proposes a novel frame-wise view synthesis method based on convolutional neural networks (CNNs) for wide-baseline light field (LF) camera arrays. A novel neural network architecture that follows a multi-resolution processing paradigm is employed to synthesize an entire view. A novel loss function formulation based on the structural similarity index (SSIM) is proposed. A wide-baseline LF image dataset is generated and employed to train the proposed deep model. The proposed method synthesizes each subaperture image (SAI) from a LF image based on corresponding SAIs from two reference LF images. Experimental results show that the proposed method yields promising results with an average PSNR and SSIM of 34.71 dB and 0.9673 respectively for wide baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于逐帧cnn的光场相机阵列视图合成
针对宽基线光场相机阵列,提出了一种基于卷积神经网络(cnn)的逐帧视图合成方法。采用一种新颖的神经网络架构,遵循多分辨率处理范式来合成整个视图。提出了一种基于结构相似指数(SSIM)的损失函数公式。生成宽基线LF图像数据集,并用于训练所提出的深度模型。该方法基于两幅参考LF图像对应的sar,从LF图像合成每个子孔径图像(SAI)。实验结果表明,该方法在宽基线下的平均PSNR和SSIM分别为34.71 dB和0.9673,取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Consistent Long Sequences Deep Faces A Novel Randomize Hierarchical Extension of MV-HEVC for Improved Light Field Compression A Novel Algebaric Variety Based Model for High Quality Free-Viewpoint View Synthesis on a Krylov Subspace Relating Eye Dominance to Neurochemistry in the Human Visual Cortex Using Ultra High Field 7-Tesla MR Spectroscopy Frame-Wise CNN-Based View Synthesis for Light Field Camera Arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1