SOFNN-based equalization using rival penalized controlled competitive learning for time-varying environments

Yao-Jen Chang, C. Ho
{"title":"SOFNN-based equalization using rival penalized controlled competitive learning for time-varying environments","authors":"Yao-Jen Chang, C. Ho","doi":"10.1109/WCSP.2009.5371665","DOIUrl":null,"url":null,"abstract":"A self-organizing fuzzy neural network (SOFNN)-based equalization is presented for time-variant environments. A rival penalized controlled competitive learning (RPCCL) is adopted to locate global minimum for mean vectors of fuzzy rules and organize the ideal structure of the fuzzy neural network (FNN) simultaneously. Then a supervised learning by means of the backpropagation (BP) algorithm is used for adjusting all parameters of the FNN. Results show that the performance of the newly designed strategy is much improved for adaptive filters with conventional FNN or least mean square (LMS) scheme.","PeriodicalId":244652,"journal":{"name":"2009 International Conference on Wireless Communications & Signal Processing","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wireless Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2009.5371665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A self-organizing fuzzy neural network (SOFNN)-based equalization is presented for time-variant environments. A rival penalized controlled competitive learning (RPCCL) is adopted to locate global minimum for mean vectors of fuzzy rules and organize the ideal structure of the fuzzy neural network (FNN) simultaneously. Then a supervised learning by means of the backpropagation (BP) algorithm is used for adjusting all parameters of the FNN. Results show that the performance of the newly designed strategy is much improved for adaptive filters with conventional FNN or least mean square (LMS) scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在时变环境中使用对手惩罚控制竞争学习的基于sofnn的均衡
针对时变环境,提出了一种基于自组织模糊神经网络(SOFNN)的均衡方法。采用对手惩罚控制竞争学习(RPCCL)对模糊规则的均值向量进行全局最小值定位,同时组织模糊神经网络的理想结构。然后采用反向传播(BP)算法的监督学习来调整FNN的所有参数。结果表明,与传统的模糊神经网络或最小均方(LMS)自适应滤波器相比,新设计的自适应滤波器的性能有很大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
U-filter's gaussianization function for interference background Performance analysis on Call Admission Control in C3G-A system Performance analysis of fixed gain relaying systems in Nakagami-m fading channels A greedy algorithm for cognitive network resource allocation based on minimum remaining constraint space A new optimum jitter protection for conversational VoIP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1